1887

Abstract

Members of the marigold genus of flowering plants (the genus ), which synthesize and accumulate thiophene compounds in their roots, were investigated as potential sources of bacteria able to degrade substituted thiophenes. Batch and continuous enrichment cultures inoculated with compost from root balls of and reproducibly produced the same predominant type of bacterium when they were supplied with thiophene-2-carboxylate (T2C) or thiophene-2-acetate (T2A) as a carbon and energy substrate. This organism was a yellow-pigmented, neutrophilic, mesophilic, gram-negative, pleomorphic, rodshaped bacterium, which we classify as a new species of the genus ; strain TagT2C (= DSM 11105) is the type strain. Strain TagT2C (T = type strain) grew on simple thiophenes, such as T2C, thiophene-3-carboxylate, and T2A, on analogs of these compounds (pyrrole-2-carboxylate and furan-2-carboxylate), and on the condensed thiophene dibenzothiophene. was facultatively autotrophic, fixing carbon dioxide by means of ribulose bisphosphate carboxylase, and was able to grow on hydrogen, thiosulfate, or sulfide as an energy substrate. It also grew on a wide range of other heterotrophic, chemolithotrophic, and methylotrophic substrates. Its growth on T2C was optimal at 28 to 31°C and pH 7.6 to 7.8, and the maximum growth rate in batch culture was 0.22 h. The DNA base composition of is 68 mol% G+C. A 16S ribosomal DNA sequence analysis of strain TagT2C showed that this organism represents a distinct lineage within the cluster of the alpha-2 subclass of the . Discrimination of from the other genera in this group and from other species is discussed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-2-394
1997-01-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/2/ijs-47-2-394.html?itemId=/content/journal/ijsem/10.1099/00207713-47-2-394&mimeType=html&fmt=ahah

References

  1. Amphlett M. J. 1968; The microbiological transformation of sulphur-containing aromatic compounds. Ph.D. thesis University of Wales; Cardiff, Wales:
    [Google Scholar]
  2. Amphlett M. J., Callely A. G. 1969; The degradation of 2-thiophenecarboxylic acid by a Flavobacterium species. Biochem. J 112:12–13
    [Google Scholar]
  3. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of the 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75:4801–4805
    [Google Scholar]
  4. Buitelaar R. M., Cesario M. T., Tramper J. 1992; Elicitation of thiophene production by hairy roots of Tagetespatula. Enzyme Microb. Technol 14:2–7
    [Google Scholar]
  5. Cawse P. A. 1967; The determination of nitrate in soil solutions by ultraviolet spectrophotometry. Analyst 92:311–315
    [Google Scholar]
  6. Cripps R. E. 1971; Microbial metabolism of aromatic compounds containing sulphur. Ph.D. thesis University of Warwick; Warwick, United Kingdom:
    [Google Scholar]
  7. Cripps R. E. 1973; The microbial metabolism of thiophene-2-carboxylate. Biochem. J 134:353–366
    [Google Scholar]
  8. Doronina N. V., Trotsenko Y. A., Krauzova V. I., Suzina N. E. 1996; New methylotrophic isolates of the genus Xanthobacter. Microbiology (Engl, transl. Mikrobiologiya) 65:217–224
    [Google Scholar]
  9. Dreyfus B., Garcia J. L., Gillis M. 1988; Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-modulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int. J. Syst. Bacteriol 38:89–98
    [Google Scholar]
  10. Evans J. S., Venables W. A. 1990; Degradation of thiophene-2-carboxylate, furan-2-carboxylate, pyrrole-2-carboxylate and other thiophene derivatives by the bacterium Vibrio YC1. Appl. Microbiol. Biotechnol 32:715–720
    [Google Scholar]
  11. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–789
    [Google Scholar]
  12. Felsenstein J. 1993 PHYLIP (phylogenetic inference package), version 3.5.1. Department of Genetics; University of Washington, Seattle:
    [Google Scholar]
  13. Fredericq E., Oth A., Fontaine F. 1961; The ultraviolet spectrum of deoxyribonucleic acids and their constituents. J. Mol. Biol 3:11–17
    [Google Scholar]
  14. Hausen B. M., Helmke B. 1995; Butenylbithiophene, alpha-terthienyl and hydroxytremetone as contact allergens in cultivars of marigold (Tagetes sp.). Contact Dermatitis 33:33–37
    [Google Scholar]
  15. Irgens R. I., Kersters K., Segers P., Gillis M., Staley J. T. 1991; Aquabacter spiritensis, gen. nov., sp. nov. an anaerobic, gas-vacuolate aquatic bacterium. Syst. Appl. Microbiol 9:254–257
    [Google Scholar]
  16. Jacobs J. J. M. R., Engelberts A., Croes A. F., Wullems G. J. 1994; Thiophene synthesis and distribution in young developing plants of Tagetes patula and Tagetes erecta. J. Exp. Bot 45:1459–1466
    [Google Scholar]
  17. Jenni B., Aragno M., Wiegel J. 1987; Numerical analysis and DNA-DNA hybridization studies on Xanthobacter and emendation of Xanthobacter flavus. Syst. Appl. Microbiol 9:247–253
    [Google Scholar]
  18. Jordan S. L., Kraczkiewicz-Dowjat A., Kelly D. P., Wood A. P. 1995; Novel eubacteria able to grow on carbon disulfide. Arch. Microbiol 163:131–137
    [Google Scholar]
  19. Juhl M. J., Clark D. P. 1990; Thiophene-degrading Escherichia coli mutants possess sulfone oxidase activity and show altered resistance to sulfur-containing antibiotics. Appl. Environ. Microbiol 56:3179–3185
    [Google Scholar]
  20. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York, N.Y:
    [Google Scholar]
  21. Kanagawa T., Kelly D. P. 1987; Degradation of substituted thiophenes by bacteria isolated from activated sludge. Microb. Ecol 13:47–57
    [Google Scholar]
  22. Kelly D. P., Wood A. P. 1994 Synthesis and determination of thiosulfate and polythionates. 475–501 Peck H. D., LeGall J.ed Methods in enzymology—inorganic sulfur metabolism Academic Press; Orlando, Fla:
    [Google Scholar]
  23. Kelly D. P., Chambers L. A., Trudinger P. A. 1969; Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate. Anal. Chern 41:898–901
    [Google Scholar]
  24. Kilbane J. J., Jackowski K. 1992; Biodesulfurization of water-soluble coal-derived material by Rhodococcus rhodochrous IGTS8. Biotechnol. Bio-eng 40:1107–1114
    [Google Scholar]
  25. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res 22:3485–3487
    [Google Scholar]
  26. Mandel M., Marmur J. 1968; Use of ultra-violet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206
    [Google Scholar]
  27. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  28. Meijer W. G., Croes L. M., Jenni B., Lehmicke L. G., Lidstrom M. E., Dijkhuizen L. 1990; Characterization of Xanthobacter strains H4-14 and 25a and enzyme profiles after growth under autotrophic and heterotrophic conditions. Arch. Microbiol 153:360–367
    [Google Scholar]
  29. Mukundan U., Hjortso M. A. 1990; Thiophene content in normal and transformed root cultures of Tagetes erecta: a comparison with thiophene content in roots of intact plants. J. Exp. Bot 41:1497–1501
    [Google Scholar]
  30. Omori T., Mouna L., Saiki L., Kodama T. 1992; Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1. Appl. Environ. Microbiol 58:911–915
    [Google Scholar]
  31. Padden A. N., Wood A. P. Unpublished data
  32. Perich M. J., Wells C., Bertsch W., Tredway K. E. 1995; Isolation of the insecticidal components of Tagetes minuta (Compositae) against mosquito larvae and adults. J. Am. Mosquito Control Assoc 11:307–310
    [Google Scholar]
  33. Rainey F. A., Wiegel J. 1996; 16S ribosomal DNA sequence analysis confirms the close relationship between the genera Xanthobacter, Azorhizobium, and Aquabacter and reveals lack of phylogenetic coherence among Xanthobacter species. Int. J. Syst. Bacteriol 46:607–610
    [Google Scholar]
  34. Rainey F. A., Ward-Rainey N., Kroppenstadt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsiaceae fam. nov. Int. J. Syst. Bacteriol 46:1088–1092
    [Google Scholar]
  35. Reding H. K., Croes G. L. M., Dijkhuizen L., Wiegel J. 1992; Emendation of Xanthobacter flavus as a motile species. Int. J. Syst. Bacteriol 42:309–311
    [Google Scholar]
  36. Romagnoli C., Mares D., Fasulo M. P., Bruni A. 1994; Antifungal effects of alpha-terthienyl from Tagetes patula on five dermatophytes. Phytother. Res 8:332–336
    [Google Scholar]
  37. Saenz Carbonell L. A, Maldonado Mendoza I. E., Moreno Valenzula O., Ciauuiyz R., Lopez Meyer M., Oropeza C., Loyola Vargas V. M. 1993; Effects of medium pH on the secondary metabolites from roots of Datura stramonium, Catharanthus roseus, and Tagetes patula cultured in vitro. Appl. Biochem. Biotechnol 38:257–267
    [Google Scholar]
  38. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  39. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol 44:846–849
    [Google Scholar]
  40. Talou J. R., Cascone O., Giulietta A. M. 1994; Content of thiophenes in transformed root cultures of Argentinian species of Tagetes. Planta Med 60:260–262
    [Google Scholar]
  41. Tuovinen O. H., Kelly D. P. 1973; Studies on the growth of Thiobacillus ferrooxidans. Arch. Mikrobiol 88:285–298
    [Google Scholar]
  42. Urakami T., Araki H., Komagata K. 1995; Characteristics of newly isolated Xanthobacter strains and fatty acid compositions and quinone systems in yellow-pigmented hydrogen-oxidizing bacteria. Int. J. Syst. Bacteriol 45:863–867
    [Google Scholar]
  43. van Afferden M., Schacht S., Klein J., Triiper H. G. 1990; Degradation of dibenzothiophene by Brevibacterium sp. DO. Arch. Microbiol 153:324–328
    [Google Scholar]
  44. Wiegel J. 1992 The genus Xanthobacter,. 2365–2383 Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K.-H.ed The prokaryotes, 2nd. Springer-Verlag; New York, N.Y:
    [Google Scholar]
  45. Wood A. P., Kelly D. P. 1983; Autotrophic, mixotrophic and heterotrophic growth with denitrification by Thiobacillus A2 under anaerobic conditions. FEMS Microbiol. Lett 16:363–370
    [Google Scholar]
  46. Wood A. P., Kelly D. P. 1985; Physiological characteristics of a new thermophilic obligately chemolithotrophic Thiobacillus species, Thiobacillus tepidarius. Int. J. Syst. Bacteriol 35:434–437
    [Google Scholar]
  47. Wood A. P., Kelly D. P. 1986; Chemolithotrophic metabolism of the newly-isolated moderately thermophilic, obligately autotrophic Thiobacillus tepidarius. Arch. Microbiol 144:71–77
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-2-394
Loading
/content/journal/ijsem/10.1099/00207713-47-2-394
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error