Phylogenetic Relationships and Uncertain Taxonomy of Species Free

Abstract

The phylogenetic relationships among the species of the genus were studied by comparing their 16S rRNA sequences. The species form a coherent phylogenetic cluster within the genera of the hyphal budding bacteria in the α-. The sequences of two strains of were obtained from DNAs extracted from nonviable freeze-dried cells, which are the only source of material available, and were found to be almost identical (level of similarity, 99.9%). Overall, the species are closely related, with sequence similarities ranging from 96.2 to 99.9%. is phylogenetically the most distantly related species and exhibits the lowest similarity (96.2%) with . Australian isolate sp. strain ACM 3067, , and are all very highly related, with similarities greater than 99%. sp. strain ACM 3067 is most closely related to (level of similarity, 99.6%) and (99.4%). These manganese-oxidizing species are more closely related to the iron-oxidizing species than to the other manganese-oxidizing species, . Taxonomic uncertainties resulting from the loss of the type culture of are discussed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-2-377
1997-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/2/ijs-47-2-377.html?itemId=/content/journal/ijsem/10.1099/00207713-47-2-377&mimeType=html&fmt=ahah

References

  1. Bauid J., Tyler P. A. 1971; Taxonomic implications of reproductive mechanisms of Hyphomicrobium-facies and Pedomicrobium-facies of a pleomorphic budding bacterium. Antonie Leeuwenhoek 37:417–424
    [Google Scholar]
  2. Boliet C., Gevaudan M. J., de Lamballerie X., Zandotti C., de Micco P. 1991; A simple method for the isolation of chromosomal DNA from Gram positive or acid-fast bacteria. Nucleic Acids Res 19:19–55
    [Google Scholar]
  3. Bond P. L., Hugenholtz P., Keller J., Blackall L. L. 1995; Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl. Environ. Microbiol 61:1910–1916
    [Google Scholar]
  4. Felsenstein J. 1993 PHYLIP—phylogeny inference package (version 3.5c). University of Washington; Seattle:
    [Google Scholar]
  5. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol 42:166–170
    [Google Scholar]
  6. Gebers R. 1981; Enrichment, isolation, and emended description of Pedomicrobium ferrugineum Aristovskaya and Pedomicrobium manganicum Aristovskaya. Int. J. Syst. Bacteriol 31:302–316
    [Google Scholar]
  7. Gebers R., Beese M. 1988; Pedomicrobium americanum sp. nov. and Pedomicrobium australicum sp. nov. from aquatic habitats, Pedomicrobium gen. emend., and Pedomicrobium ferrugineum sp. emend. Int. J. Syst. Bacteriol 38:303–315
    [Google Scholar]
  8. Gebers R., Mandel M., Hirsch P. 1981; Deoxyribonucleic acid base composition and nucleotide distribution of Pedomicrobium spp. Zentralbl. Bakteriol. Hyg. Abt. 1 Orig. G 2:332–338
    [Google Scholar]
  9. Gebers R., Martens B., Wehmeyer U., Hirsch P. 1986; Deoxyribonucleic acid homologies of Hyphomicrobium spp., Hyphomonas spp., and other hyphal budding bacteria. Int. J. Syst. Bacteriol 36:241–245
    [Google Scholar]
  10. Gebers R., Moore R. L., Hirsch P. 1981; DNA-DNA reassociation studies on the genus Pedomicrobium. FEMS Microbiol. Lett 11:283–286
    [Google Scholar]
  11. Gebers R., Moore R. L., Hirsch P. 1984; Physiological properties and DNA-DNA homologies of Hyphomonas polymorpha and Hyphomonas neptunium. Syst. Appl. Microbiol 5:510–517
    [Google Scholar]
  12. Gebers R., Wehmeyer U., Roggentin T., Schlesner H., Kolbel-Boelke J., Hirsch P. 1985; Deoxyribonucleic acid base compositions and nucleotide distributions of 65 strains of budding bacteria. Int. J. Syst. Bacteriol 35:260–269
    [Google Scholar]
  13. Gherna R. L. Personal communication
  14. Hirsch P. Personal communication
  15. Hirsch P. 1989 Genus Hyphomicrobium,. 1895–1904 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 Williams & Wilkins; Baltimore, Md:
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York, N.Y:
    [Google Scholar]
  17. Kolbel-Boelke J., Gebers R., Hirsch P. 1985; Genome size determinations for 33 strains of budding bacteria. Int. J. Syst. Bacteriol 35:270–273
    [Google Scholar]
  18. Lane D. J. 1991 16S/23S rRNA sequencing. 115–163 Stackebrandt E., Goodfellow M.ed Nucleic acid techniques in bacterial systematics John Wiley & Sons; Chichester, England:
    [Google Scholar]
  19. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res 22:3485–3487
    [Google Scholar]
  20. Moore W. E. C., Moore L. V. H. 1992 Index of the bacterial and yeast nomenclatural changes. American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  21. Murray R. G. E., Brenner D. J., Colwell R. R., De Vos P., Goodfellow M., Grimont P. A. D., Pfennig N., Stackebrandt E., Zavarzin G. A. 1990; Report of the Ad Hoc Committee on Approaches to Taxonomy within the Proteobacteria. Int. J. Syst. Bacteriol 40:213–215
    [Google Scholar]
  22. Nakamura L. K. 1984; Bacillus psychrophilus sp. nov., nom. rev. Int. J. Syst. Bacteriol 34:121–123
    [Google Scholar]
  23. Olsen G. J., Woese C. R., Overbeek R. 1994; The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol 176:1–6
    [Google Scholar]
  24. Roggentin T., Hirsch P. 1989; Ribosomal RNA cistron similarities among Hyphomicrobium species and several other hyphal, budding bacteria. Syst. Appl. Microbiol 11:140–147
    [Google Scholar]
  25. Ruger H. J., Richter G. 1979; Bacillus psychrophilus Larkin and Stokes 1967, a later synonym of Bacillus globisporus Larkin and Stokes 1967. Int. J. Syst. Bacteriol 29:194–195
    [Google Scholar]
  26. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  27. Skerman V. B. D., McGowan V., Sneath P. H. A.ed 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol 30:225–420
    [Google Scholar]
  28. Sly L. L., Arunpairojana V., Hodgkinson M. C. 1988; Pedomicrobium manganicum from drinking-water distribution systems with manganese-related “dirty water” problems. Syst. Appl. Microbiol 11:75–84
    [Google Scholar]
  29. Sneath P. H. A. 1995; Taxonomic note: the potential of dead bacterial specimens for systematic studies. Int. J. Syst. Bacteriol 45:188–189
    [Google Scholar]
  30. Stackebrandt E., Fischer A., Roggentin T., Wehmeyer U., Bomar D., Smida J. 1988; A phylogenetic survey of budding, and/or prosthecate, non-phototrophic eubacteria: membership of Hyphomicrobium, Hyphomonas, Pedomicrobium, Filomicrobium, Caulobacter and “Dichotomicrobium” to the alpha-subdivision of purple non-sulfur bacteria. Arch. Microbiol 149:547–556
    [Google Scholar]
  31. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol 44:846–849
    [Google Scholar]
  32. Tindall B. J. Personal communication
  33. Tyler P., Marshall K. C. 1967; Pleomorphy in stalked, budding bacteria. J. Bacteriol 93:1132–1136
    [Google Scholar]
  34. Tyler P. A., Marshall K. C. 1967; Hyphomicrobia—a significant factor in manganese problems. J. Am. Waste Water Assoc 59:1043–1048
    [Google Scholar]
  35. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Triiper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol 37:463–464
    [Google Scholar]
  36. Woese C. R., Stackebrandt E., Macke T. J., Fox G. E. 1985; A phylogenetic definition of the major eubacterial taxa. Syst. Appl. Microbiol 6:143–151
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-2-377
Loading
/content/journal/ijsem/10.1099/00207713-47-2-377
Loading

Data & Media loading...

Most cited Most Cited RSS feed