1887

Abstract

sp. nov. DG-1 (= DSMZ 10669) (T = type strain) was isolated from well-drained, aggregated forest soil (pH 6.0) in east-central Germany. The cells were obligately anaerobic, slightly curved rods and were motile by means of laterally inserted flagella on the concave side of each cell. Typical cells were approximately 3.5 by 0.7 μm. Cells stained weakly gram positive, but thin sections revealed a complex multilayer cell wall. Spores were spherical and distended the sporangia. Growth and substrate utilization occurred with ferulate, vanillate, fructose, betaine, fumarate, 2,3-butanediol, pyruvate, lactate, glycerol, ethanol, methanol, formate, and H-CO. With most substrates, acetate was the primary reduced end product and was produced in stoichiometries indicative of an acetyl-coenzyme A pathway-dependent metabolism. Fumarate was dismutated to succinate and acetate. Methoxyl and acrylate groups of various aromatic compounds were O-demethylated and reduced, respectively. Yeast extract was not required for growth. Cells grew optimally at approximately 30°C and pH 6.8; under these conditions and with fructose as the substrate, the doubling time was approximately 14 h. The lowest temperature that supported growth was between 5 and 10°C. The carbon monoxide dehydrogenase and hydrogenase activities were approximately 9 and 102 μmol min mg of protein, respectively. A type cytochrome was detected in the membrane. The G+C content was approximately 43 mol%. Phylogenetic analysis of the 16S ribosomal DNA indicated that DG-1 was most closely related to members of the genus in the subphylum of the gram-positive bacteria.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-2-352
1997-01-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/2/ijs-47-2-352.html?itemId=/content/journal/ijsem/10.1099/00207713-47-2-352&mimeType=html&fmt=ahah

References

  1. Alef K. 1991 Methodenhandbuch Bodenmikrobiologie. Ecomed Verlagsgesellschaft mbh; Landsberg/Lech, Germany:
    [Google Scholar]
  2. Bache R., Pfennig N. 1981; Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch. Mikrobiol 72:154–174
    [Google Scholar]
  3. Beji A., Izard D., Gavini F., Leclerc H., Leseine-Delstanche M., Krembel J. 1987; A rapid chemical procedure for isolation and purification of chromosomal DNA from Gram-negative bacilli. Anal. Biochem 162:18–23
    [Google Scholar]
  4. Blenden D. C., Goldberg H. S. 1965; Silver impregnation stain for Leptospira and flagella. J. Bacteriol 89:899–900
    [Google Scholar]
  5. Bogdahn M., Andreesen J. R., Kleiner D. 1983; Pathways and regulation of N2, ammonium and glutamate assimilation by Clostridium formicoaceticum. Arch. Microbiol 134:167–169
    [Google Scholar]
  6. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem 72:248–254
    [Google Scholar]
  7. Breznak J. A. 1994 Acetogenesis from carbon dioxide in termite guts. 303–330 Drake H. L.ed Acetogenesis Chapman & Hall; New York, N.Y:
    [Google Scholar]
  8. Breznak J. A., Switzer J. M., Seitz H.-J. 1988; Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch. Microbiol 150:282–288
    [Google Scholar]
  9. Brune A, Emerson D., Breznak J. A. 1995; The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl. Environ. Microbiol 61:2681–2687
    [Google Scholar]
  10. Buschhorn H., Dürre P., Gottschalk G. 1989; Production and utilization of ethanol by the homoacetogen Acetobacterium woodii. Appl. Environ. Microbiol 55:1835–1840
    [Google Scholar]
  11. Cataldo D. A., Haroon M., Schrader L. E., Young V. L. 1975; Rapid colorimetric determination of nitrate in plant tissue by titration of salicylic acid. Commun. Soil Sci. Plant Anal 6:81–90
    [Google Scholar]
  12. Cato E. P., George W. L., Finegold S. M. 1986 Clostridium. 1141–1200 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 2 Williams & Wilkins; Baltimore, Md:
    [Google Scholar]
  13. Clark G. 1973 Staining procedures used by the Biological Stain Commission. , 3rd. The Williams & Wilkins Co.; Baltimore, Md:
    [Google Scholar]
  14. Colberg P. J. 1988 Anaerobic microbial degradation of cellulose, lignin, oligolignols, and monoaromatic lignin derivatives. 333–372 Zehnder A. J. B.ed Biology of anaerobic microorganisms Wiley; New York, N.Y:
    [Google Scholar]
  15. Collins M. D., Lawson P. A, Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium·, proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol 44:812–826
    [Google Scholar]
  16. Daniel S. L., Hsu T., Dean S. I., Drake H. L. 1990; Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivuii. J. Bacteriol 172:4464–4471
    [Google Scholar]
  17. Dehning I., Stieb M., Schink B. 1989; Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate and succinate. Arch. Microbiol 151:421–426
    [Google Scholar]
  18. Dorn M., Andreesen J. R., Gottschalk G. 1978; Fermentation of fumarate and l-malate by Clostridium formicoaceticum. J. Bacteriol 133:26–32
    [Google Scholar]
  19. Drake H. L. 1982; Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum. J. Bacteriol 150:702–709
    [Google Scholar]
  20. Drake H. L. 1994 Acetogenesis, acetogenic bacteria, and the acetyl-CoA “Wood/Ljungdahl” pathway: past and current perspectives. 3–60 Drake H. L.ed Acetogenesis Chapman & Hall; New York, N.Y:
    [Google Scholar]
  21. Drake H. L., Daniel S. L., Küsel K., Matthies C., Kühner C., Braus-Stromeyer S. Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities?. BioFactors in press
    [Google Scholar]
  22. Felsenstein J. 1993 PHYLIP (phylogeny inference package), version 3.5.1. Department of Genetics; University of Washington, Seattle:
    [Google Scholar]
  23. Flaig W. 1971; Organic compounds in soil. Soil Sci 111:19–33
    [Google Scholar]
  24. Fox T. R., Comerford N. B. 1990; Low-molecular-weight organic acids in selected forest soils of the southeastern USA. Soil Sci. Soc. Am. J 54:1139–1144
    [Google Scholar]
  25. Frazier A. C. 1994 O-Demethylation and other transformations of aromatic compounds by acetogenic bacteria. 445–483 Drake H. L.ed Acetogenesis Chapman & Hall; New York, N.Y:
    [Google Scholar]
  26. Fröstl J. M., Seifritz C., Drake H. L. 1996; Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum. J. Bacteriol 178:4597–4603
    [Google Scholar]
  27. Gößner A., Daniel S. L., Drake H. L. 1994; Acetogenesis coupled to the oxidation of aromatic aldehyde groups. Arch. Microbiol 161:126–141
    [Google Scholar]
  28. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur. J. Appl. Microbiol. Biotechnol 5:123–127
    [Google Scholar]
  29. Hermann M., Popoff M.-R., Sebald M. 1987; Sporomusa paucivorans sp. nov., a methylotrophic bacterium that forms acetic acid from hydrogen and carbon dioxide. Int. J. Syst. Bacteriol 37:93–101
    [Google Scholar]
  30. Huang P. M., Violante A. 1986 Influence of organic acids on crystallization and surface properties of precipitation products of aluminum. 159–221 Huang P. M., Schnitzer M.ed Interactions of soil minerals with natural organics and microbes Soil Science Society of America, Inc.; Madison, Wis:
    [Google Scholar]
  31. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  32. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York, N.Y:
    [Google Scholar]
  33. Kamlage B., Boelter A., Blaut M. 1993; Spectroscopic and potentiometric characterization of cytochromes in two Sporomusa species and their expression during growth on selected substrates. Arch. Microbiol 159:189–196
    [Google Scholar]
  34. Küsel K., Drake H. L. 1994; Acetate synthesis by soil from a Bavarian beech forest. Appl. Environ. Microbiol 60:1370–1373
    [Google Scholar]
  35. Küsel K., Drake H. L. 1995; Effects of environmental parameters on the formation and turnover of acetate by forest soils. Appl. Environ. Microbiol 61:3667–3675
    [Google Scholar]
  36. Küsel K., Drake H. L. 1996; Anaerobic capacities of leaf litter. Appl. Environ. Microbiol 62:4216–4219
    [Google Scholar]
  37. Limmer C., Drake H. L. 1996; Non-symbiotic N2-fixation in acidic and pH-neutral forest soils: aerobic and anaerobic differentials. Soil Biol. Biochem 28:177–183
    [Google Scholar]
  38. Liu S., Suflita J. M. 1993; H2-CO2-dependent anaerobic O-demethylation activity in subsurface sediments and by an isolated bacterium. Appl. Environ. Microbiol 59:1325–1331
    [Google Scholar]
  39. Lundie L. L. Jr., Drake H. L. 1984; Development of a minimally defined medium for the acetogen Clostridium thermoaceticum. J. Bacteriol 159:700–703
    [Google Scholar]
  40. Maidak B. L., Olsen G. J, Larsen N., McCaughey M. J., Woese C. R. 1996; The Ribosomal Database Project (RDP). Nucleic Acids Res 24:82–85
    [Google Scholar]
  41. Matthies C., Freiberger A., Drake H. L. 1993; Fumarate dissimilation and differential reductant flow by Clostridium formicoaceticum and Clostridium aceticum. Arch. Microbiol 160:273–278
    [Google Scholar]
  42. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol 39:159–167
    [Google Scholar]
  43. Misoph M., Daniel S. L., Drake H. L. 1996; Bidirectional usage of ferulate by the acetogen Peptostreptococcus productus U-l: CO2 and aromatic acrylate groups as competing electron acceptors. Microbiology 142:1983–1988
    [Google Scholar]
  44. Misoph M., Drake H. L. 1996; Effect of CO2 on the fermentation capacities of the acetogen Peptostreptococcus productus U-l. J. Bacteriol 178:3140–3145
    [Google Scholar]
  45. Möller B., Oßmer R., Howard B. H., Gottschalk G., Hippe H. 1984; Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch. Microbiol 139:388–396
    [Google Scholar]
  46. Nozhevnikova A. N., Kotsyurbenko O. R., Simankova M. V. 1995 Acetogenesis at low temperature. 416–431 Drake H. L.ed Acetogenesis Chapman & Hall; New York, N.Y:
    [Google Scholar]
  47. Ollivier B., Cordruwisch R., Lombardo A., Garcia J.-L. 1985; Isolation and characterization of Sporomusa acidovorans sp. nov., a methylotrophic homoacetogenic bacterium. Arch. Microbiol 142:307–310
    [Google Scholar]
  48. Peters V., Conrad R. 1995; Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils. Appl. Environ. Microbiol 61:1673–1676
    [Google Scholar]
  49. Pohlmann A. A., McColl J. G. 1988; Soluble organics from forest litter and their role in metal dissolution. Soil. Sci. Soc. Am. J 52:265–271
    [Google Scholar]
  50. Postgate J. R. 1984 The sulphate-reducing bacteria. , 2nd. Cambridge University Press; London, England:
    [Google Scholar]
  51. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage; proposal of Nocardiopsaceae fam. nov. Int. J. Syst. Bacteriol 46:1088–1092
    [Google Scholar]
  52. Rennie R. 1981; A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Can. J. Microbiol 27:8–14
    [Google Scholar]
  53. Reynolds E. S. 1963; The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol 7:208
    [Google Scholar]
  54. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  55. Savage M. D., Wu Z., Daniel S. L., Lundie L. L. Jr., Drake H. L. 1987; Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum. Appl. Environ. Microbiol 53:1902–1906
    [Google Scholar]
  56. Schink B. 1994 Diversity, ecology and isolation of acetogenic bacteria. 197–235 Drake H. L.ed Acetogenesis Chapman & Hall; New York, N.Y:
    [Google Scholar]
  57. Seifritz C., Daniel S. L., GoBner A., Drake H. L. 1993; Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum. J. Bacteriol 175:8008–8013
    [Google Scholar]
  58. Stevenson F. J. 1967 Organic acids in soil. 119–146 McLaren A. D., Peterson G. H.ed Soil biochemistry 1 Marcel Dekker; New York, N.Y:
    [Google Scholar]
  59. Tani M., Higashi T., Nagatsuka S. 1993; Dynamics of low-molecular-weight aliphatic carboxylic acids (LACAs) in forest soils. I. Amount and composition of LACAs in different types of forest soils in Japan. Soil. Sci. Plant Nutr 39:485–495
    [Google Scholar]
  60. Traub W. H., Acker G., Kleber I. 1976; Ultrastructural surface alterations of Serratia marcescens after exposure to polymyxin B and/or fresh human serum. Chemotherapy 22:104–113
    [Google Scholar]
  61. Tschech A., Pfennig N. 1984; Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Mikrobiol 72:154–174
    [Google Scholar]
  62. Valentine R. C., Shapiro B. M., Stadtman E. R. 1968; Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry 7:2143–2152
    [Google Scholar]
  63. Wagner C., GrieBhammer A., Drake H. L. 1996; Acetogenic capacities and the anaerobic turnover of carbon in a Kansas prairie soil. Appl. Environ. Microbiol 62:494–500
    [Google Scholar]
  64. Widdel F., Kohring G. W., Mayer F. 1983; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov. Arch. Microbiol 134:286–294
    [Google Scholar]
  65. Widdel F., Pfennig N. 1981; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol 129:395–400
    [Google Scholar]
  66. Willems A., Collins M. D. 1995; Phylogenetic placement of Dialister pneumosintes (formerly Bacteriodespneumosintes) within the Sporomusa subbranch of the Clostridium subphylum of the gram-positive bacteria. Int. J. Syst. Bacteriol 45:403–405
    [Google Scholar]
  67. Wolin E. A., Wolfe R. S., Wolin M. J. 1964; Viologen dye inhibition of methane formation by Methanobacillus omelianskii. J. Bacteriol 87:993–998
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-2-352
Loading
/content/journal/ijsem/10.1099/00207713-47-2-352
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error