1887

Abstract

The taxonomic characteristics of five bacterial strains which were isolated from Antarctic coastal marine environments were studied. These bacteria were psychrotrophic, aerobic, and gram negative with polar flagella. The G+C contents of the DNAs of these strains were 41 to 42 mol%. The Antarctic strains were phenotypically distinct from the previously described type species. DNA-DNA hybridization experiments revealed that the new strains were closely related to each other but clearly different from and , which were the most phenotypically similar organisms. None of the bacterial isolates was capable of using -malate, -sorbitol, or -hydroxybenzoate, and all were capable of gelatin hydrolysis. Strains NF2, NF3 (T = type strain), NF13, NF14, and EN10 had an Na requirement but required only 17 mM Na. Phenotypic, DNA G+C content, DNA-DNA hybridization, 16S rRNA analysis, fatty acid composition, and protein profile data confirmed the identification of the Antarctic strains as members of a sp. The name sp. nov. is proposed for these organisms.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-2-345
1997-01-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/2/ijs-47-2-345.html?itemId=/content/journal/ijsem/10.1099/00207713-47-2-345&mimeType=html&fmt=ahah

References

  1. Akagawa-Matsushita M., Koga Y., Yamasato K. 1993; DNA relatedness among nonpigmented species of Alteromonas and synonymy of Alteromonas haloplanktis (Zobell and Upham 1944) Reichelt and Baumann 1973 and Alteromonas tetraodonis Simidu et al. 1990. Int. J. Syst. Bacteriol 43:500–503
    [Google Scholar]
  2. Akagawa-Matsushita M., Matsuo M., Koga Y., Yamasato K. 1992; Alteromonas atlántica sp. nov. and Alteromonas carragenovora sp. nov., bacteria that decompose algal polysaccharides. Int. J. Syst. Bacteriol 42:621–627
    [Google Scholar]
  3. Bauer A. N., Kirby W. M. M., Sherry J. C., Turek M. 1966; Antibiotic susceptibility testing by a standardized single disc method. Am. J. Clin. Pathol 45:493–496
    [Google Scholar]
  4. Baumann L., Baumann P., Mandel M., Allen R. D. 1972; Taxonomy of aerobic marine eubacteria. J. Bacteriol 110:402–429
    [Google Scholar]
  5. Baumann P., Baumann L. 1981 The marine Gram-negative eubacteria genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes,. 1302–1330 Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G.ed The prokaryotes. A handbook on habitats, isolation and identification of bacteria 2 Springer-Verlag A. G.; Berlin, Germany:
    [Google Scholar]
  6. Baumann P., Baumann L., Bowditch R. D., Beaman B. 1984; Taxonomy of Alteromonas: A. nigrifaciens sp. nov., nom. rev.; A. macleodii; and A. haloplanktis. Int. J. Syst. Bacteriol 34:145–149
    [Google Scholar]
  7. Baumann P., Gauthier M. J., Baumann L. 1984 Genus Alteromonas Baumann, Baumann, Mandel, and Allen, 1972, 418. 343–352 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  8. Bozal N., Manresa A., Castellvi J., Guinea J. 1994; A new bacterial strain of Antarctica, Alteromonas sp. that produces a heteropolymer slime. Polar Biol 14:561–567
    [Google Scholar]
  9. Chan K. Y., Baumann L., Gazza M. M., Baumann P. 1978; Two new species of Alteromonas·. Alteromonas espejiana and Alteromonas undina. Int. J. Syst. Bacteriol 28:217–222
    [Google Scholar]
  10. Cowan S. T., Steel K. J. 1974 Manual for the identification of medical bacteria. , 2nd. Cambridge University Press; Cambridge, United Kingdom:
    [Google Scholar]
  11. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem 12:133–142
    [Google Scholar]
  12. Enger O., Nygaard H., Solberg M., Schei G., Nielsen J., Dundas I. 1987; Characterization of Alteromonas denitrificans sp. nov. Int. J. Syst. Bacteriol 37:416–421
    [Google Scholar]
  13. Felsenstein J. 1982; Numerical methods for inferring phylogenetic trees. Q. Rev. Biol 57:379–404
    [Google Scholar]
  14. Ferragut C., Leclerc H. 1976; Etude comparative des methodes de determination du Tm de l’ADN bactérien. Ann. Microbiol. (Paris) 127:223–235
    [Google Scholar]
  15. Gauthier G., Gauthier M., Christen R. 1995; Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int. J. Syst. Bacteriol 45:755–761
    [Google Scholar]
  16. Gauthier M. J. 1976; Alteromonas rubra sp. nov., a new marine antibioticproducing bacterium. Int. J. Syst. Bacteriol 26:459–466
    [Google Scholar]
  17. Gauthier M. J. 1977; Alteromonas citrea, a new gram-negative, yellow-pigmented species from seawater. Int. J. Syst. Bacteriol 27:349–354
    [Google Scholar]
  18. Gauthier M. J., Breittmayer V. A. 1979; A new antibiotic-producing bacterium from seawater: Alteromonas aurantia sp. nov. Int. J. Syst. Bacteriol 29:366–372
    [Google Scholar]
  19. Gauthier M. J. 1982; Validation of the name Alteromonas luteoviolacea. Int. J. Syst. Bacteriol 32:82–86
    [Google Scholar]
  20. Gauthier M. J., Breittmayer V. A. 1992 The genera Alteromonas and Marinomonas,. 3046–3084 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes, 2nd. 3 SpringerVerlag; Berlin, Germany:
    [Google Scholar]
  21. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram-negative bacteria. J. Bacteriol 66:24–26
    [Google Scholar]
  22. International Journal of Systematic Bacteriology 1981; Validation of the publication of new names and new combinations previously effectively published outside the USB. List no. 6. Int. J. Syst. Bacteriol 31:215–218
    [Google Scholar]
  23. Ivanova E. P., Kipriànova E. A., Mikhailov V. V., Levanova G. F., Garagulya A. D., Gorshkova N. M., Yumoto N., Yoshikawa S. 1996; Characterization and identification of marine Alteromonas nigrifaciens strains and emendation of the description. Int. J. Syst. Bacteriol 46:223–228
    [Google Scholar]
  24. Jeffries C. D., Holtman D. F., Guse D. G. 1957; Rapid method for determining the activity of microorganisms on nucleic acids. J. Bacteriol 73:590
    [Google Scholar]
  25. Jensen M. J., Tebo B. M., Baumann P., Mandel M., Nealson K. H. 1980; Characterization of Alteromonas hanedai (sp. nov.), a nonfermentative luminous species of marine origin. Curr. Microbiol 3:311–315
    [Google Scholar]
  26. Johnson J. L. 1985; DNA reassociation and RNA hybridization of bacterial nucleic acids. Methods Microbiol 28:33–74
    [Google Scholar]
  27. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med 44:301
    [Google Scholar]
  28. Kodama K., Shiozawa H., Ishi A. 1993; Alteromonas rava sp. nov., a marine bacterium that produces a new antibiotic, thiomarinol. Annu. Rep. Sankyo Res. Lab 45:131–136
    [Google Scholar]
  29. Kovacs N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature (London) 178:703
    [Google Scholar]
  30. Lee J. V., Gibson D. M., Shewan J. M. 1977; A numerical taxonomic study of some pseudomonas-like marine bacteria. J. Gen. Microbiol 98:439–451
    [Google Scholar]
  31. Lelliot R. A., Billing E., Hayward A. C. 1966; A determinative scheme for the fluorescent plant pathogenic pseudomonads. J. Appl. Bacteriol 29:470–489
    [Google Scholar]
  32. Maidak B. L., Larsen N., MacCaughey M. J., Overbeek R., Olsen G., Fogel K., Blandy J., Woese C. R. 1995; The Ribosomal Database Project. Nucleic Acids Res 22:3485–3487
    [Google Scholar]
  33. Marmur j. 1961; A procedure for the isolation of deoxyribonucleic acids from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  34. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  35. Owen R. J., Hill L. R. 1979 The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. 217–296 Skinner F. A., Lovelock D. W.ed Identification methods for microbiologists, 2nd. Academic Press; London, United Kingdom:
    [Google Scholar]
  36. Owen R. J., Pitcher D. 1985 Current methods for estimating DNA base composition and levels of DNA-DNA hybridization. 67–93 Goodfellow M., Minhikin E.ed Chemical methods in bacterial systematics Academic Press; London, United Kingdom:
    [Google Scholar]
  37. Palleroni N. J., Doudoroff M. 1972; Some properties and taxonomic subdivisions of the genus Pseudomonas. Annu. Rev. Phytopathol 10:73–100
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular cloning: a laboratory manual. , 2nd. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, N.Y:
    [Google Scholar]
  39. Selin Y. M., Harisch B., Johnson J. L. 1983; Preparation of labeled nucleic acids (nick translation and iodination) for DNA homology and rRNA hybridization experiments. Curr. Microbiol 8:127–132
    [Google Scholar]
  40. Sierra G. 1957; A simple method for the detection of lipolytic activity of microorganisms and some observations on the influence of contact between cells and fatty substrates. Antonie van Leewenhoek 23:37–52
    [Google Scholar]
  41. Simidu U., Kita-Tsukamoto K., Yasumoto T., Yotsu M. 1990; Taxonomy of four marine bacterial strains that produce tetrodotoxin. Int. J. Syst. Bacteriol 40:331–336
    [Google Scholar]
  42. Springer N., Ludwig W., Amann R., Schmidt H. J., Gorth H. D., Schleifer K. H. 1993; Occurrence of fragmented 16S rRNA in an obligate bacterial endosymbiont of Paramecium caudatum. Proc. Natl. Acad. Sci. USA 90:9892–9895
    [Google Scholar]
  43. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol 44:846–849
    [Google Scholar]
  44. Strunk O., Ludwig W. Unpublished data
  45. Thornley M. J. 1960; The differentiation of Pseudomonas from other gramnegative bacteria on the basis of arginine metabolism. J. Appl. Bacteriol 23:37–52
    [Google Scholar]
  46. Tjernberg I., Lindh E., Ursing J. 1989; A quantitative bacterial method for DNA-DNA hybridization and its correlation to the hydroxyapatite method. Curr. Microbiol 18:77–81
    [Google Scholar]
  47. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Triiper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol 37:463–464
    [Google Scholar]
  48. Weiner R. M., Coyne V. E., Brayton P., West P., Raiken S. F. 1988; Alteromonas colwelliana sp. nov., an isolate from oyster habitats. Int. J. Syst. Bacteriol 38:240–244
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-2-345
Loading
/content/journal/ijsem/10.1099/00207713-47-2-345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error