Emended Description of and Description of sp. nov. and sp. nov. Free

Abstract

Abstract

The taxonomic position of unidentified group 6 of as described by Nakamura and Swezey (L. K. Nakamura and J. Swezey, Int. J. Syst. Bacteriol. 33:46–52, 1983) was determined, and the taxonomy of was reexamined. The results of PCR amplification of a 16S rRNA gene fragment with a specific primer and comparative analysis of 16S rRNA gene sequences warranted placing the two taxa in the genus The levels of DNA reassociation among the strains revealed four groups (designated groups I, II, III, and 6), each with a high level of intragroup relatedness (>72%). Clustering based on pheno-typic characteristics correlated well with DNA relatedness grouping. strains were scattered in groups I, II, and III. Strains labeled the type strain of from different culture collections appeared in groups I and III. Strains found in group I were identified as sensu stricto, and the one strain found in group III was identified as Group 6 encompassed strains formerly assigned to group 6, and group II contained other strains identified as Groups 6 and II were phenotypically and genetically distinct taxa that were distinguishable from the previously described species. These findings showed that groups 6 and II were new species, for which we propose the names and respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-2-299
1997-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/2/ijs-47-2-299.html?itemId=/content/journal/ijsem/10.1099/00207713-47-2-299&mimeType=html&fmt=ahah

References

  1. Alexander B., Priest F. G. 1989; Bacillus glucanolyticus, a new species that degrades a variety of β-glucans. Int. J. Syst. Bacteriol. 39:112–115
    [Google Scholar]
  2. Ash C., Priest F. G., Collins M. D. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks, and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64:253–260
    [Google Scholar]
  3. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872. 1105–1140 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Bergey’s manual of systematic bacteriology 2 The Williams and Wilkins Co.; Baltimore, Md.:
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39:224–229
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  6. Fox G. E., Wisotzkey J., Jurtshuk P. Jr. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42:166–170
    [Google Scholar]
  7. Gordon R. E., Hynes W. C., Pang C. H. N. 1973 The genus Bacillus. Agricultural Handbook no. 427 U.S. Department of Agriculture; Washington, D.C.:
    [Google Scholar]
  8. Heyndrickx M., Vandemeulebroecke K., Scheldeman P., Kersters K., De Vos P., Logan N. A., Aziz A. M., Ali N., Berkeley R. C. W. 1996; A polyphasic reassessment of the genus Paenibacillus, reclassification of Bacillus lautus (Nakamura 1984) as Paenibacillus lautus comb. nov. and Bacillus peoriae (Montefusco et al. 1993) as Paenibacillus peoriae comb, nov., and emended description of P. lautus and P. peoriae. Int. J. Syst. Bacteriol. 46:988–1003
    [Google Scholar]
  9. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111–120
    [Google Scholar]
  10. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 19:161–207
    [Google Scholar]
  11. Nakamura L. K., Swezey J. 1983; Taxonomy of Bacillus circulans Jordan 1890: base composition and reassociation of deoxyribonucleic acid. Int. J. Syst. Bacteriol. 33:46–52
    [Google Scholar]
  12. Nakamura L. K., Swezey J. 1983; Deoxyribonucleic acid relatedness of Bacillus circulans Jordan 1890 strains. Int. J. Syst. Bacteriol. 33:703–708
    [Google Scholar]
  13. Nakamura L. K. 1984; Bacillus amylolyticus sp. nov., nom. rev., Bacillus lautus sp. nov., nom. rev., Bacillus pabuli sp. nov., nom. rev., and Bacillus validus sp. nov., nom. rev. Int. J. Syst. Bacteriol. 34:224–226
    [Google Scholar]
  14. Nakamura L. K. 1987; Bacillus alginolyticus sp. nov. and Bacillus chondroitinus sp. nov., two alginate-degrading species. Int. J. Syst. Bacteriol. 37:284–286
    [Google Scholar]
  15. Priest F. G., Goodfellow M., Todd C. 1988; A numerical classification of the genus Bacillus. J. Gen. Microbiol. 134:1847–1882
    [Google Scholar]
  16. Saito N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  17. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467
    [Google Scholar]
  18. Shida O., Takagi H., Kadowaki K., Komagata K. 1996; Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int. J. Syst. Bacteriol. 46:939–946
    [Google Scholar]
  19. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997; Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int. J. Syst. Bacteriol. 47:289–298
    [Google Scholar]
  20. Takagi H., Shida O., Kadowaki K., Komagata K., Udaka S. 1993; Characterization of Bacillus brevis with descriptions of Bacillus migulanus sp. nov., Bacillus choshinensis sp. nov., Bacillus parabrevis sp. nov., and Bacillus galactophilus sp. nov. Int. J. Syst. Bacteriol. 43:221–231
    [Google Scholar]
  21. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-2-299
Loading
/content/journal/ijsem/10.1099/00207713-47-2-299
Loading

Data & Media loading...

Most cited Most Cited RSS feed