1887

Abstract

Abstract

Selected phenotypic characteristics of isolates of (formerly ) were studied in order to establish whether the characteristics of genotypic strain groups established previously on the basis of 16S ribosomal DNA sequences differed systematically. Among strains formerly considered subsp. strains related to strain GA33 (T = type strain) typically failed to produce carboxymethyl cellulase (CMCase) activity detectable by plate assays and failed to ferment xylose, while strains related to strain B4 produced abundant CMCase and fermented xylose. We propose that strains related to GA33, which have DNA G+C contents between 45 and 51 mol%, should be assigned to a new species, and that strains related to B4, which have DNA G+C contents between 39 and 43 mol%, should be assigned to another new species, Most of the isolates formerly classified as subsp. strains produced CMCase and had DNA G+C contents between 45 and 51 mol%, and we propose that these organisms should be placed in the redefined species A small group of isolates that have lower G+C contents are assigned to another new species, Most and strains produced abundant extracellular DNase activity. Proteinase activities (as determined by [C] casein hydrolysis) varied widely between strains, and strains exhibited the highest mean activity. All strains produced dipeptidyl peptidase activity, but the relative activities against different peptide substrates exhibited by and differed systematically. The phenotypic differences among the newly defined species suggest that they may occupy distinct niches within the rumen ecosystem.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-2-284
1997-01-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/2/ijs-47-2-284.html?itemId=/content/journal/ijsem/10.1099/00207713-47-2-284&mimeType=html&fmt=ahah

References

  1. Avguštin G. 1992 Analysis of the role of Prevotella (Bacteroides) ruminicola in the rumen ecosystem using molecular genetic techniques Ph.D. thesis University of Ljubljana; Domzale, Slovenia:
    [Google Scholar]
  2. Avgustin G., Wright F., Flint H. J. 1994; Genetic diversity and phylogenetic relationships among strains of Prevotella (Bacteroides) ruminicola from the rumen. Int. J. Syst. Bacteriol. 44:246–255
    [Google Scholar]
  3. Bryant M. P. 1972; Commentary on the Hungate technique for culture of anaerobic bacteria. Am. J. Clin. Nutr. 25:1324–1328
    [Google Scholar]
  4. Bryant M. P., Small N., Bouma C., Chu H. 1958; Bacteroides ruminicola n. sp. and Succinimonas amylolytica, the new genus and species. J. Bacteriol. 76:15–23
    [Google Scholar]
  5. Caldwell D. R., Bryant M. P. 1966; Medium without rumen fluid for non-selective enumeration and isolation of rumen bacteria. Appl. Microbiol. 14:794–801
    [Google Scholar]
  6. Dehority B. A. 1966; Characterization of several bovine rumen bacteria isolated with a xylan medium. J. Bacteriol. 91:1724–1729
    [Google Scholar]
  7. Dehority B. A. 1969; Pectin-fermenting bacteria isolated from the bovine rumen. J. Bacteriol. 99:189–196
    [Google Scholar]
  8. Flint H. J., Thomson A. M. 1990; Deoxyribonuclease activity in isolated rumen bacteria. Lett. Appl. Microbiol. 11:18–21
    [Google Scholar]
  9. Gardner R. G., Wells J. E., Russell J. B., Wilson D. B. 1995; The cellular location of Prevotella ruminicola β-l,4-D-endoglucanase and its occurrence in other strains of ruminai bacteria. Appl. Environ. Microbiol. 61:3288–3292
    [Google Scholar]
  10. Hespell R. B., Whitehead T. R. 1990; Physiology and genetics of xylan degradation by gastrointestinal tract bacteria. J. Dairy Sci. 73:3013–3022
    [Google Scholar]
  11. Hobson P. N. 1969; Rumen bacteria. Methods Microbiol. 3B:133–149
    [Google Scholar]
  12. Holdeman L. V., Good I. J., Moore W. E. C. 1976; Human cecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl. Environ. Microbiol. 31:359–375
    [Google Scholar]
  13. Holdeman L. V., Kelley R. W., Moore W. E. C. 1984; Bacteroides. 623–624 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1 Williams and Wilkins; Baltimore, Md.:
    [Google Scholar]
  14. Hungate R. E. 1966 The rumen and its microbes Academic Press, Inc.; New York, N.Y.:
    [Google Scholar]
  15. Mannarelli B. M., Ericsson L. D., Lee D., Stack R. J. 1991; Taxonomic relationships among strains of the anaerobic bacterium Bacteroides ruminicola determined by DNA and extracellular polysaccharide analysis. Appl. Environ. Microbiol. 57:2975–2980
    [Google Scholar]
  16. McKain N., Wallace R. J., Watt N. D. 1992; Selective isolation of bacteria with dipeptidyl aminopeptidase I activity from the sheep rumen. FEMS Microbiol. Lett. 95:169–174
    [Google Scholar]
  17. Pittman K. A., Bryant M. P. 1964; Peptides and other nitrogen sources for growth of Bacteroides ruminicola. J. Bacteriol. 88:401–410
    [Google Scholar]
  18. Robinson I. M., Allison M. J., Bucklin A. J. 1981; Characterization of the cecal bacteria of normal pigs. Appl. Environ. Microbiol. 41:950–955
    [Google Scholar]
  19. Robinson I. M., Whipp S. C., Bucklin A. J., Allison M. J. 1984; Characterization of predominant bacteria from the colons of normal and dysenteric pigs. Appl. Environ. Microbiol. 48:964–969
    [Google Scholar]
  20. Rudek W., Haque R.-U. 1976; Extracellular enzymes of the genus Bacteroides. J. Clin. Microbiol. 4:458–460
    [Google Scholar]
  21. Russell J. B. 1983; Fermentation of peptides by Bacteroides ruminicola B14. Appl. Environ. Microbiol. 45:1568–1574
    [Google Scholar]
  22. Shah H. N., Collins M. D. 1990; Prevotella, a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides. Int. J. Syst. Bacteriol. 40:205–208
    [Google Scholar]
  23. Teather R. M., Wood P. J. 1982; Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43:777–780
    [Google Scholar]
  24. Thomson A. M. 1990 Gene transfer in rumen Bacteroides species Ph.D. thesis University of Aberdeen; Aberdeen, United Kingdom:
    [Google Scholar]
  25. Van Gylswyk N. O. 1990; Enumeration and presumptive identification of some functional groups of bacteria in the rumen of dairy cows fed grass silage-based diets. FEMS Microbiol. Ecol. 73:243–254
    [Google Scholar]
  26. Wallace R. J., Brammall M. L. 1985; The role of different species of bacteria in the hydrolysis of protein in the rumen. J. Gen. Microbiol. 131:821–832
    [Google Scholar]
  27. Wallace R. J., McKain N. 1989; Analysis of peptide metabolism by ruminai microorganisms. Appl. Environ. Microbiol. 55:2372–2376
    [Google Scholar]
  28. Wallace R. J., McKain N. 1991; A survey of peptidase activity in rumen bacteria. J. Gen. Microbiol. 137:2259–2264
    [Google Scholar]
  29. Wallace R. J., McKain N., Broderick G. A. 1993; A comparison of the breakdown of pure peptides by Bacteroides ruminicola and mixed rumen microorganisms from the sheep rumen. Curr. Microbiol. 26:333–336
    [Google Scholar]
  30. Wood J., Flint H. J. Unpublished data
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-2-284
Loading
/content/journal/ijsem/10.1099/00207713-47-2-284
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error