1887

Abstract

Abstract

Polyamine patterns of 75 strains of actinobacteria belonging to the genera , , , , , , , , , and were analyzed in order to investigate the suitability of this approach for differentiation within this group. The results revealed that the overall polyamine contents differ significantly among genera and that various patterns are present in actinobacteria. One characteristic pattern found in the genera , and included a high polyamine concentration, and the polyamines were mainly spermidine and spermine. This feature distinguished the 2,4-diaminobutyric acid-containing genera , , and , which contained low concentrations of polyamines. Strains of the genus were characterized by the presence of high concentrations of cadavarine and usually high concentrations of putrescine. Members of the genus had relatively low polyamine contents, and usually spermidine was the major polyamine. A similar polyamine pattern was detected in the species of the genus No homogeneous polyamine patterns were detected in representatives of the genera and , which are phylogenetically intermixed (M. Takeuchi and A. Yokota, FEMS Microbiol. Lett. 124:11–16, 1994). The results of polyamine analyses are in good agreement with the genetic heterogeneity within the actinobacteria and demonstrate that polyamine patterns are suitable for use in classification of actinobacterial taxa.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-2-270
1997-04-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/2/ijs-47-2-270.html?itemId=/content/journal/ijsem/10.1099/00207713-47-2-270&mimeType=html&fmt=ahah

References

  1. Athalye M., Noble W. C., Mallet A., Minnikin D. E. 1984; Gas chromatography-mass spectrometry of mycolic acids as a tool in the identification of medically important cornyeform bacteria. J. Gen. Microbiol. 130:513–519
    [Google Scholar]
  2. Auling G., Busse J., Hahn M., Hennecke H., Kroppenstedt R.-M., Probst A., Stackebrandt E. 1988; Phylogenetic heterogeneity and chemotaxonomic properties of certain Gram-negative aerobic carboxydobacteria. Syst. Appl. Microbiol. 10:264–272
    [Google Scholar]
  3. Auling G., Busse H.-J., Pilz F., Webb L., Kneifel H., Claus D. 1991; Rapid differentiation by polyamine analysis of Xanthomonas strains from phytopathogenic pseudomonads and other members of the class Proteobacteria interacting with plants. Int. J. Syst. Bacteriol. 41:223–228
    [Google Scholar]
  4. Auling G., Pilz P., Busse H.-J., Karrasch S., Streichan M., Schön G. 1991; Analysis of the polyphosphate-accumulating microflora in phosphorus-eliminating anaerobic-aerobic activated sludge systems using diaminopropane as a biomarker for rapid estimation of Acinetobacter. Appl. Environ. Microbiol. 57:3585–3592
    [Google Scholar]
  5. Bousfield I. J., Smith G. L., Dando T. R., Hobbs G. 1983; Numerical analysis of total fatty acid profiles in the identification of coryneform, no-cardioform and some other bacteria. J. Gen. Microbiol. 129:375–394
    [Google Scholar]
  6. Busse J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst. Appl. Microbiol. 11:1–8
    [Google Scholar]
  7. Busse H.-J., El Banna T., Auling G. 1989; Evaluation of different approaches for identification of xenobiotic-degrading pseudomonads. Appl. Environ. Microbiol. 55:1578–1583
    [Google Scholar]
  8. Busse H.-J., El-Banna T., Oyaizu H., Auling G. 1992; Identification of xenobiotic-degrading isolates from the beta subclass of the Proteobacteria by a polyphasic approach including 16S rRNA partial sequencing. Int. J. Syst. Bacteriol. 42:19–26
    [Google Scholar]
  9. Cai J., Collins M. D. 1994; Phylogenetic analysis of species of the meso-diaminopimelic acid-containing genera Brevibacterium and Dermabacter. Int. J. Syst. Bacteriol. 44:583–585
    [Google Scholar]
  10. Collins M. D., Goodfellow M. 1979; Isoprenoid quinones in the classification of coryneform and related bacteria. J. Gen. Microbiol. 110:127–136
    [Google Scholar]
  11. Collins M. D., Goodfellow M., Minnikin D. E. 1982; Fatty acid composition of some mycolic acid-containing coryneform bacteria. J. Gen. Microbiol. 128:2503–2509
    [Google Scholar]
  12. Collins M. D., Jones D. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J. Appl. Bacteriol. 48:459–470
    [Google Scholar]
  13. Evtushenko L. I. Personal communication
    [Google Scholar]
  14. Evtushenko L. I., Dorofeeva L. V., Dobrovolskaya T. G., Subbotin S. A. 1994; Coryneform bacteria from plant galls induced by nematodes of the subfamily Anguininae. Russ. J. Nematol. 2:99–104
    [Google Scholar]
  15. Fiedler F., Schäffler M., Stackebrandt E. 1981; Biochemical and nucleic acid hybridisation studies on Brevibacterium lines and related strains. Arch. Microbiol. 129:85–93
    [Google Scholar]
  16. Goodfelow M., Zakrzewska-Czerwinska J., Thomas E. G., Mordarski M., Ward A. C., James A. L. 1991; Polyphasic taxonomic study of the genera Gordona and Tsukamurella including the description of Tsukamurella wratislaviensis sp. nov. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. 275:162–178
    [Google Scholar]
  17. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int. J. Syst. Bacteriol. 46:234–239
    [Google Scholar]
  18. Hamana K. 1994; Polyamine distribution patterns in aerobic Gram-positive cocci and some radio-resistant bacteria. J. Gen. Appl. Microbiol. 40:181–195
    [Google Scholar]
  19. Hamana K., Akiba T., Uchino F., Matsuzaki S. 1989; Distribution of spermine in bacilli and lactic bacteria. Can. J. Microbiol. 35:450–455
    [Google Scholar]
  20. Hamana K., Hamana H., Niitsu M., Samejima K., Sakane T., Yokota A. 1993; Tertiary and quarternary branched polyamines distributed in thermophilic Saccharococcus and Bacillus. Microbios 75:23–32
    [Google Scholar]
  21. Hamana K., Kamekura M., Onishi H., Akazawa T., Matsuzaki S. 1985; Polyamines in photosynthetic eubacteria and extreme-halophilic archaebacteria. J. Biochem. 97:1653–1658
    [Google Scholar]
  22. Hamana K., Matsuzaki S. 1987; Distribution of polyamines in actinomycetes. FEMS Microbiol. Lett. 41:211–215
    [Google Scholar]
  23. Hamana K., Matsuzaki S. 1990; Five types of polyamine distribution patterns in thiobacilli. FEMS Microbiol. Lett. 70:347–352
    [Google Scholar]
  24. Hamana K., Matsuzaki S. 1990; Occurrence of homospermidine as a major polyamine in the authentic genus Flavobacterium. Can. J. Microbiol. 36:228–231
    [Google Scholar]
  25. Hamana K., Matsuzaki S. 1991; Polyamine distribution in the Flavobacterium-Cytophaga-Sphingobacterium complex. Can. J. Microbiol. 37:885–888
    [Google Scholar]
  26. Hamana K., Matsuzaki S. 1993; Polyamine distribution patterns serve as a phenotypic marker in the chemotaxonomy of the Proteobacteria. Can. J. Microbiol. 39:304–310
    [Google Scholar]
  27. Hamana K., Matsuzaki S., Sakakibara M. 1988; Distribution of sym-homospermidine in eubacteria, cyanobacteria, algae and ferns. FEMS Microbiol. Lett. 50:11–16
    [Google Scholar]
  28. Hamana K., Satake S. 1995; Absence of cellular polyamines in Gram-positive anaerobic cocci and lactic acid bacteria. J. Gen. Appl. Microbiol. 41:159–163
    [Google Scholar]
  29. Hamana K., Sakane T., Yokota A. 1994; Polyamine analysis of the genera Aquaspirillum, Magnetospirillum, Oceanospirillum and Spirullum. J. Gen. App. Microbiol. 40:78–82
    [Google Scholar]
  30. Henningson P. J., Gudmestad N. C. 1991; Fatty acid analysis of phytopathogenic coryneform bacteria. J. Gen. Microbiol. 137:427–440
    [Google Scholar]
  31. Kämpfer P., Bark K., Busse H.-J., Auling G., Dott W. 1992; Numerical and chemotaxonomy of polyphosphate accumulating Acinetobacter strains with high polyphosphate:AMP phosphotransferase (PPAT) activity. Syst. Appl. Microbiol. 15:409–419
    [Google Scholar]
  32. Kampfer P., Seiler H., Dott W. 1993; Numerical classification of coryneform bacteria and related taxa. J. Gen. Appl. Microbiol. 39:135–214
    [Google Scholar]
  33. Koch C., Schumann P., Stackebrandt E. 1995; Reclassification of Micrococcus agilis (Ali-Cohen 1889) to the genus Arthrobacter as Arthrobacter agilis comb. nov. and emendation of the genus Arthrobacter. Int. J. Syst. Bacteriol. 45:837–839
    [Google Scholar]
  34. Li X., De Boer S. H. 1995; Comparison of 16S ribosomal RNA genes in Clavibacter michiganensis species with other coryneform bacteria. Can. J. Microbiol. 41:925–929
    [Google Scholar]
  35. Minnikin D. E., Alshamaony L., Goodfellow M. 1975; Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J. Gen. Microbiol. 88:200–204
    [Google Scholar]
  36. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia, and related taxa. J. Appl. Bacteriol. 47:87–95
    [Google Scholar]
  37. Owens J. D., Keddie R. M. 1969; The nitrogen nutrition of soil and herbage coryneform bacteria. J. Appl. Bacteriol. 32:338–347
    [Google Scholar]
  38. Pascual C., Lawson P. A., Farrow J. A. E., Gimenez M. Navarro, Collins M. D. 1995; Phylogenetic analysis of the genus Corynebacterium based on 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 45:724–728
    [Google Scholar]
  39. Rainey F., Weiss N., Prauser H., Stackebrandt E. 1994; Further evidence for the phylogenetic coherence of actinomycetes with group B-peptidoglycan and evidence for the phylogenetic intermixing of the genera Microbacterium and Aureobacterium as determined by 16S rDNA analysis. FEMS Microbiol. Lett. 118:135–140
    [Google Scholar]
  40. Rainey F. A., Burghardt J., Kroppenstedt R. M., Klatte S., Stackebrandt E. 1995; Phylogenetic analysis of the genera Rhodococcus and Nocardia and evidence for the evolutionary origin of the genus Nocardia from within the radiation of Rhodococcus species. Microbiology 141:523–528
    [Google Scholar]
  41. Ruimy R., Riegel P., Boiron P., Monteil H., Christen R. 1995; Phytogeny of the genus Corynebacterium deduced from analyses of small-subunit ribosomal DNA sequences. Int. J. Syst. Bacteriol. 45:740–746
    [Google Scholar]
  42. Schleifer K. H., Kandier O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36:407–477
    [Google Scholar]
  43. Seiler H. 1983; Identification key for coryneform bacteria derived by numerical taxonomic studies. J. Gen. Microbiol. 129:1433–1471
    [Google Scholar]
  44. Stackebrandt E., Koch C., Gvozdiak O., Schumann P. 1995; Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int. J. Syst. Bacteriol. 45:682–692
    [Google Scholar]
  45. Suzuki K., Kaneko T., Komagata K. 1981; Deoxyribonucleic acid homologies among coryneform bacteria. Int. J. Syst. Bacteriol. 31:131–138
    [Google Scholar]
  46. Suzuki K.-L., Sasaki J., Uramoto M., Nakase T., Komagata K. 1996; Agromyces mediolanus sp. nov., nom. rev., comb, nov., a species for “Corynebacterium mediolanum” Mamoli 1939 and for some aniline-assimilating bacteria which contain 2,4-diaminobutyric acid in the cell wall peptidoglycan. Int. J. Syst. Bacteriol. 46:88–93
    [Google Scholar]
  47. Tabor C. W., Tabor H. 1995; Polyamines in microorganisms. Microbiol. Rev. 49:81–99
    [Google Scholar]
  48. Takeuchi M., Yokota A. 1989; Cell-wall polysaccharides in coryneform bacteria. J. Gen. Appl. Microbiol. 35:233–252
    [Google Scholar]
  49. Takeuchi M., Yokota A. 1994; Phylogenetic analysis of the genus Microbacterium based on 16S rRNA gene sequences. FEMS Microbiol. Lett. 124:11–16
    [Google Scholar]
  50. Yamamoto S., Shinoda S., Kawaguchi M., Wakamatsu K., Makita M. 1983; Polyamine distribution in Vibrionaceae: norspermine as a general constituent of Vibrio species. Can. J. Microbiol. 29:724–728
    [Google Scholar]
  51. Yang P., De Vos P., Kersters K., Swings J. 1993; Polyamine patterns as chemotaxonomic markers for the genus Xanthomonas. Int. J. Syst. Bacteriol. 43:709–714
    [Google Scholar]
  52. Yassin A. F., Rainey F. A., Brzezinka H., Burghardt J., Lee H. J., Schaal K. P. 1995; Tsukamurella inchonensis sp. nov. Int. J. Syst. Bacteriol. 45:522–527
    [Google Scholar]
  53. Yokota A., Takeuchi M., Sakane T., Weiss N. 1993; Proposal of six new species in the genus Aureobacterium and transfer of Flavobacterium esteraromaticum Omelianski to the genus Aureobacterium as Aureobacterium esteraromaticum comb. nov. Int. J. Syst. Bacteriol. 43:555–564
    [Google Scholar]
  54. Yokota A., Takeuchi M., Weiss N. 1993; Proposal of two new species in the genus Microbacterium: Microbacterium dextranolyticum sp. nov. and Microbacterium aurum sp. nov. Int. J. Syst. Bacteriol. 43:549–554
    [Google Scholar]
  55. Zgurskaya H. I., Evtushenko L. I., Akimov V. N., Kalakoutskii L. V. 1993; Rathayibacter gen. nov., including the species Rathayibacter rathayi comb, nov., Rathayibacter tritici comb, nov., Rathayibacter iranicus comb, nov., and six strains from annual grasses. Int. J. Syst. Bacteriol. 43:143–149
    [Google Scholar]
  56. Zgurskaya H. I., Evtushenko L. I., Akimov V. N., Voyevoda H. V., Dobrovolskaya T. G., Lysak L. V., Kalakoutskii L. V. 1992; Emended description of the genus Agromyces and description of Agromyces cerinus subsp. cerinus sp. nov., subsp. nov., Agromyces cerinus subsp. nitratus sp. nov., subsp. nov., Agromyces fucosus subsp. fucosus sp. nov., subsp. nov., and Agromyces fucosus subsp. hippuratus sp. nov., subsp. nov. Int. J. Syst. Bacteriol. 42:635–641
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-2-270
Loading
/content/journal/ijsem/10.1099/00207713-47-2-270
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error