1887

Abstract

A 5.0-kb region containing the gene was cloned from and sequenced. In addition to the gene, this sequence region also contained the complete sequences for the and genes and partial sequences for the and genes. The order of the above gene sequences in the cloned fragment was found to be . which is similar to the order seen in various other gram-positive groups of bacteria. The Hsp70 homologs from two mycoplasma species, and . contain a number of sequence signatures, including the absence of a large insert in the N-terminal quadrant, that are characteristics of the homologs from gram-positive bacteria and archae-bacteria. A detailed phylogenetic analysis based on Hsp70 sequences was also performed. In neighbor-joining and parsimony trees based on Hsp70 sequences, both mycoplasma species branched with the low-G+C-content gram-positive group of bacteria (e.g., and species) in 87% and 96% of the bootstrap replicates, respectively, indicating their close evolutionary relationship to this group. The phylogenetic trees based on Hsp70 sequences show a polyphyletic branching of archaebacteria with the gram-positive species, which is statistically strongly favored.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-1-38
1997-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/1/ijs-47-1-38.html?itemId=/content/journal/ijsem/10.1099/00207713-47-1-38&mimeType=html&fmt=ahah

References

  1. Benachenhou-Lahfa N., Forterre P., Labedan B. 1993; Evolution of glutamate dehydrogenase genes: evidence for two paralogous protein families and unusual branching pattern of the archaebacteria in the universal tree of life. J. Mol. Evol. 36:335–346
    [Google Scholar]
  2. Boorstein W. R., Zeigelhoffer T., Craig E. A. 1994; Molecular evolution of the HSP70 multigene family. J. Mol. Evol. 38:1–17
    [Google Scholar]
  3. Bork P., Ouzounis C., Cesari G., Schneider R., Sander C., Dolan M., Gilbert W., Gilbert P. M. 1995; Exploring the Mycoplasma capricolum genome: a minimal cell reveals its physiology. Mol. Microbiol. 16:955–967
    [Google Scholar]
  4. Brown J. R., Masuchi Y., Robb F. T., Doolittle W. F. 1994; Evolutionary relationships of bacterial and archael glutamine synthetase genes. J. Mol. Evol. 38:566–576
    [Google Scholar]
  5. Dascher C. C., Poddar S. K., Maniloff J. 1990; Heat shock response in mycoplasma, genome-limited organisms. J. Bacteriol. 172:1823–1827
    [Google Scholar]
  6. DeWachter R., Huysmans E., Vandenberge A. 1986; 5S ribosomal RNA as a tool for studying evolution. 115–141 Schleifer K. H., Stackebrandt E. Evolution of prokaryotes Academic Press, Inc.; New York, N.Y.:
    [Google Scholar]
  7. Eaton T., Shearman C., Gasson M. 1993; Cloning and sequence analysis of the dnaK gene region of Lactococcus lactis subsp. lactis. J. Gen. Microbiol. 739:3253–3264
    [Google Scholar]
  8. Eisen J. A. 1995; The RecA protein as a model molecule for molecular systematics studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J. Mol. Evol. 41:1105–1123
    [Google Scholar]
  9. Falah M., Gupta R. S. 1994; Cloning of the hsp70/dnaK gene from Rhizobium meliloti and Pseudomonas cepacia: phylogenetic analyses of mitochondrial origin based on a highly conserved protein sequence. J. Bacteriol. 176:7748–7753
    [Google Scholar]
  10. Felsenstein J. 1993 PHYLIP manual, version 3.5 University of Washington; Seattle:
    [Google Scholar]
  11. Fraser C. M., Gocayne J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult J. C., Kerlavoge A. R., Sutton G., Kelly J. M., Fritchman J. L., Weidman J. F., Small K. V., Sandusky M., Fuhrmann J., Nguyen D., Utterback T. R., Saudek D. M., Phillips C. A., Merrick J. M., Tomb J. F., Dougherty B. A., Bottom K. F., Hu P. C., Lucier T. S., Peterson S. N., Smith H. O., Hutchison C. A. III, Venter J. C. 1995; The minimal gene complement of Mycoplasma genitalium. Science 270:397–403
    [Google Scholar]
  12. Golding G. B., Gupta R. S. 1995; Protein based phylogenies support a chimeric origin for the eukaryotic genome. Mol. Biol. Evol. 12:1–6
    [Google Scholar]
  13. Gupta R. S., Singh B. 1992; Cloning of the HSP70 gene from Halobacterium marismortui: relatedness of archaebacterial HSP70 to its eubacterial homologs and a model for the evolution of HSP70 gene. J. Bacteriol. 174:4594–4605
    [Google Scholar]
  14. Gupta R. S., Golding G. B. 1993; Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria and eukaryotes. J. Mol. Biol. 37:573–582
    [Google Scholar]
  15. Gupta R. S., Singh B. 1994; Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus. Curr. Biol. 4:1104–1114
    [Google Scholar]
  16. Gupta R. S., Aitken K., Falah M., Singh B. 1994; Cloning of Giardia lamblia HSP70 homologs: phylogenies based on HSP70 and HSP90 sequences point to gene duplication events accompanying the origin of eukaryotic cells. Proc. Natl. Acad. Sci. USA 91:2895–2899
    [Google Scholar]
  17. Hori H., Sawada M., Osawa S., Murao K., Ishikura H. 1981; The nucleotide sequence of 5S rRNA from Mycoplasma capricolum. Nucleic Acids Res. 9:5407–5410
    [Google Scholar]
  18. Karlin S., Weinstock G. M., Brendel V. C. 1995; Bacterial classifications derived from RecA protein sequence comparisons. J. Bacteriol. 177:6881–6893
    [Google Scholar]
  19. Macario E. C., Dugan C. B., Macario A. J. L. 1994; Identification of a grpE heat shock gene homolog in the archaeon Methanosarcina mazei. J. Mol. Biol. 240:95–101
    [Google Scholar]
  20. Maniloff J., McElhaney R. N., Finch L. R., Basemann J. B. 1992 Mycoplasmas: molecular biology and pathogenesis American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  21. Morimoto R. I., Tissieres A., Georgopoulos C. 1994 The biology of heat shock proteins and molecular chaperones Cold Spring Harbor Laboratory Press; Cold Spring Harbor, N.Y.:
    [Google Scholar]
  22. Narberhaus F., Giebeler K., Bahl H. 1992; Molecular characterization of the dnaK gene region of Clostridium acetobutylicum, including grpE, dnaJ, and a new heat shock gene. J. Bacteriol. 174:3290–3299
    [Google Scholar]
  23. Oba T., Andachi Y., Muto A., Osawa S. 1991; CGG: an unassigned or nonsense codon in Mycoplasma capricolum. Proc. Natl. Acad. Sci. USA 88:921–925
    [Google Scholar]
  24. Ohta T., Saito K., Kuroda M., Honda K., Hirata H., Hayashi H. 1994; Molecular cloning of two new heat shock genes related to the hsp70 genes in Staphylococcus aureus. J. Bacteriol. 176:4779–4783
    [Google Scholar]
  25. Osawa S., Muto A., Ohama T., Andachi Y., Tanaka R., Yamao F. 1990; Prokaryotic genetic code. Experientia 46:1097–1106
    [Google Scholar]
  26. Razin S., Freundt E. A. 1984; The mycoplasmas. 740–793 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1 The Williams and Wilkins Co.; Baltimore, Md.:
    [Google Scholar]
  27. Razin S. 1985; Molecular biology and genetics of mycoplasmas. Microbiol. Rev. 49:419–455
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method of reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  29. Tiboni O., Cammarano P., Sanangelantoni A. M. 1993; Cloning and sequencing of the gene coding glutamine synthetase I from the archaeum Pyrococcus woesi: anomalous phylogenies inferred from analysis of archael and bacterial glutamine synthetase I sequences. J. Bacteriol. 175:2961–2969
    [Google Scholar]
  30. Weisburg W. G., Tully J. G., Rose D. L., Petzel J. P., Oyaizu H., Yang D., Mandelco L., Sechrest J., Lawrence T. G., Etten J. V., Maniloff J., Woese C. R. 1989; A phylogenetic analysis of mycoplasmas: basis for their classification. J. Bacteriol. 171:6455–6467
    [Google Scholar]
  31. Wetzstein M., Völker U., Dedio J., Löbau S., Zuber U., Schiesswohl M., Herget C., Hecker M., Schumann W. 1992; Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis. J. Bacteriol. 174:3300–3310
    [Google Scholar]
  32. Woese C. R., Maniloff J., Zablen L. B. 1980; Phylogenetic analysis of the mycoplasma. Proc. Natl. Acad. Sci. USA 77:494–498
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-1-38
Loading
/content/journal/ijsem/10.1099/00207713-47-1-38
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error