1887

Abstract

Determination of the 16S rRNA gene sequence of ATCC 15264 (T = type strain) confirmed that this species is a member of the alpha subclass of the and showed that it is phylogenetically most closely related to the group comprising the species , and , for which 16S rRNA sequences of the type strains are currently available. The closest known relative of strain ATCC 15264 among these species is (level of direct pairwise sequence similarity, 95%). On the basis of its previously determined 16S rRNA sequence (accession number M83797), is most closely related to in the alpha-4 subgroup (level of similarity, 97.7%). Analysis of the hydroxy fatty acids of ATCC 15264 showed that the 2-hydroxymyristic acid which is characteristic of the genus was absent.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-1-211
1997-01-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/1/ijs-47-1-211.html?itemId=/content/journal/ijsem/10.1099/00207713-47-1-211&mimeType=html&fmt=ahah

References

  1. Dorsch M., Stackebrandt E. 1992; Some modifications in the procedure of direct sequencing of PCR amplified 16S rDNA. J. Microbiol. Methods 16:271–279
    [Google Scholar]
  2. Felsenstein J. 1991 PHYLIP version 3.4 University of Washington; Seattle:
    [Google Scholar]
  3. Fuerst J. A., Hawkins J. A., Holmes A., Sly L. I., Moore C. J., Stackebrandt E. 1993; Porphyrobacter neustonensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-synthesizing budding bacterium from freshwater. Int. J. Syst. Bacteriol. 43:125–134
    [Google Scholar]
  4. Hugenholtz P., Stackebrandt E., Fuerst J. A. 1994; A phylogenetic analysis of the genus Blastobacter with a view to its future reclassification. Syst. Appl. Microbiol. 17:51–57
    [Google Scholar]
  5. Jones G. J., Nichols P. D., Johns R. B., Smith J. D. 1987; The effect of mercury and cadmium on the fatty acid and sterol composition of the marine diatom Asterionella glacialis. Phytochemistry 26:1343–1348
    [Google Scholar]
  6. Jones G. J., Nichols P. D., Shaw P. M. 1994; Analysis of sterols and hopanoids in bacteria and eukaryotic microorganisms. 163–195 Goodfellow M., O’Donnell A. G. Chemical methods in prokaryote systematics John Wiley and Sons; Chichester, United Kingdom:
    [Google Scholar]
  7. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. 21–132 Munro H. N. Mammalian protein metabolism Academic Press; New York, N.Y.:
    [Google Scholar]
  8. Maidak B. L., Larsen N., McCaughey J., Overbeck R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res. 22:3483–3487
    [Google Scholar]
  9. Moore W. E. C., Moore L. V. H. 1992 Index of the bacterial and yeast nomenclatural changes American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  10. Nikitin D. I., Vishnewetskaya O. Y., Chumakov K. M., Zlatkin I. V. 1990; Evolutionary relationship of some stalked and budding bacteria (genera Caulobacter, “Hyphobacter,” Hyphomonas and Hyphomicrobium) as studied by the new integral taxonomical method. Arch. Microbiol. 153:123–128
    [Google Scholar]
  11. Poindexter J. 1989; Genus Caulobacter. 1924–1939 Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Bergey’s manual of systematic bacteriology 3 Williams & Wilkins; Baltimore, Md.:
    [Google Scholar]
  12. Poindexter J. S. 1964; Biological properties and classification of the Caulobacter group. Bacteriol. Rev. 28:231–295
    [Google Scholar]
  13. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  14. Segers P., Vancanneyt M., Pot B., Torck U., Hoste B., Dewettinck D., Falsen E., Kersters K., De Vos P. 1994; Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb, nov., respectively. Int. J. Syst. Bacteriol. 44:499–510
    [Google Scholar]
  15. Shiba T., Simidu U. 1982; Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int. J. Syst. Bacteriol. 32:211–217
    [Google Scholar]
  16. Sittig M., Hirsch P. 1992; Chemotaxonomic investigation of budding and/or hyphal bacteria. Syst. Appl. Microbiol. 15:209–222
    [Google Scholar]
  17. Skerman V. B. D., McGowan V., Sneath P. H. A. Approved lists of bacterial names, amended ed American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  18. Skerman V. B. D., Sly L. I., Williamson M.-L. 1983; Conglomeromonas largomobilis gen. nov., sp. nov., a sodium-sensitive, mixed-flagellated organism from fresh waters. Int. J. Syst. Bacteriol. 33:300–308
    [Google Scholar]
  19. Sly L. I. 1985; Emendation of the genus Blastobacter Zavarzin 1961 and description of Blastobacter natatorius sp. nov.. Int. J. Syst. Bacteriol. 35:40–45
    [Google Scholar]
  20. Stahl D. A., Key R., Flesher B., Smit J. 1992; The phytogeny of marine and freshwater caulobacters reflects their habitat. J. Bacteriol. 174:2193–2198
    [Google Scholar]
  21. Takeuchi M., Sawada H., Oyaizu H., Yokota A. 1994; Phylogenetic evidence for Sphingomonas and Rhizomonas as nonphotosynthetic members of the alpha-4 subclass of the Proteobacteria. Int. J. Syst. Bacteriol. 44:308–314
    [Google Scholar]
  22. van Bruggen A. H. C., Jochimsen K. N., Steinberger E. M., Segers P., Gillis M. 1993; Classification of Rhizomonas suberifaciens, an unnamed Rhizomonas species, and Sphingomonas spp. in rRNA superfamily IV. Int. J. Syst. Bacteriol. 43:1–7
    [Google Scholar]
  23. Woese C. R., Stackebrandt E., Weisburg W. G., Paster B. J., Madigan M. T., Fowler V. J., Hahn C. M., Blanz P., Gupta R., Nealson K. H., Fox G. E. 1984; The phytogeny of purple bacteria: the alpha subdivision. Syst. Appl. Microbiol. 5:315–326
    [Google Scholar]
  24. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb, nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb, nov., and two genospecies of the genus Sphingomonas. Microbiol. Immunol. 34:99–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-1-211
Loading
/content/journal/ijsem/10.1099/00207713-47-1-211
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error