1887

Abstract

A thermophilic anaerobic bacterium designated strain RWcit2 (T = type strain) was isolated from the production water of a petroleum reservoir. The cells of this organism are straight to slightly curved rods that are gram negative and nonmotile. Spore formation has not been demonstrated. Growth occurs at temperatures ranging from 28 to 60°C, with optimum growth occurring at 55°C, and at pH values ranging from 5.5 to 8.6, with optimum growth occurring between pH 7 and 7.6. Growth occurs in media containing 0 to 20 g of NaCl per liter, and optimum growth occurs in the presence of 10 g of NaCl per liter. Strain RWcit2 grows on a range of organic acids, including citrate, pyruvate, malate, fumarate, and tartrate; on protein extracts; and on a limited number of carbohydrates. Sulfur, thiosulfate, and cystine are reduced to hydrogen sulfide. Sulfate, sulfite, and nitrate are not reduced. The DNA base composition is 44 mol% G+C. The 16S ribosomal DNA sequence revealed that strain RWcit2 is a member of the domain and forms a branch that is approximately equidistant from and spp. (level of similarity, 82%). Strain RWcit2 cannot be placed in any previously described taxon based on its phylogenetic and physiological traits and is named gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-1-150
1997-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/1/ijs-47-1-150.html?itemId=/content/journal/ijsem/10.1099/00207713-47-1-150&mimeType=html&fmt=ahah

References

  1. Antranikian G., Friese C., Quentmeier A., Hippe H., Gottschalk G. 1984; Distribution of the ability for citrate utilization amongst Clostridia. Arch. Microbiol. 138:179–182
    [Google Scholar]
  2. Atlas R. 1993 Handbook of microbiological media CRC Press; Boca Raton, Fla.:
    [Google Scholar]
  3. Beeder J., Torsvik T., Lien T. 1995; Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch. Microbiol. 164:331–336
    [Google Scholar]
  4. Belyaev S. S., Rozanova E. P., Borzenkov I. A., Charakhch’yan I. A., Miller Y. M., Sokolov M. Y., Ivanov M. V. 1990; Characteristics of microbiological processes in a water-flooded oilfield in the middle Ob’ region. Microbiology (Engl. Transi. Mikrobiologiya) 59:754–759
    [Google Scholar]
  5. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44:992–993
    [Google Scholar]
  6. Cayol J. L., Ollivier B., Patel B. K. C., Ravot G., Magot M., Ageron E., Grimont P. A. D., Garcia J. L. 1995; Description of Thermoanaerobacter brockii subsp. lactiethylicus subsp. nov., isolated from a deep subsurface French oil well, a proposal to reclassify Thermoanaerobacter finnii as Thermoanaerobacter brockii subsp. finnii comb, nov., and an emended description of Thermoanaerobacter brockii. Int. J. Syst. Bacteriol. 45:783–789
    [Google Scholar]
  7. Cook G. M., Janssen P. H., Morgan H. W. 1991; Endospore formation by Thermoanaerobium brockii HTD4. Syst. Appl. Microbiol. 14:240–244
    [Google Scholar]
  8. Cook G. M., Rainey F. A., Chen G., Stakebrandt E., Russell J. B. 1994; Emendation of the description of Acidaminococcus fermentens, a trans-aconitate- and citrate-oxidizing bacterium. Int. J. Syst. Bacteriol. 44:576–578
    [Google Scholar]
  9. Davey M. E., Wood W. A., Key R. K., Nakamura K., Stahl D. A. 1993; Isolation of three species of Geotoga and Petrotoga: two new genera, representing a new lineage in the bacterial line of descent distantly related to the “Thermotogales.”. Syst. Appl. Microbiol. 16:191–200
    [Google Scholar]
  10. Davydova-Charakhch’yan I. A., Mileeva A. N., Mityushina L. L., Belyaev S. S. 1992; Acetogenic bacteria from oil fields of Tataria and western Siberia. Microbiology (Engl. Transi. Mikrobiologiya) 61:208–216
    [Google Scholar]
  11. Doetsch R. N. 1981; Determinative methods of light microscopy. 21–33 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  12. Faudon C., Fardeau M. L., Heim J., Magot M., Ollivier B. 1995; Peptide and amino acid oxidation in the presence of thiosulfate by members of the genus Thermoanaerobacter. Curr. Microbiol. 31:152–157
    [Google Scholar]
  13. Felsenstein J. 1993 PHYLIP (phylogenetic inference package), version 3.5.1c Department of Genetics, University of Washington; Seattle:
    [Google Scholar]
  14. Grassia G. S. 1995 Ph.D. thesis University of Canberra; Canberra, Australia:
    [Google Scholar]
  15. Harvey R. J., Collins E. B. 1961; Role of citritase in acetoin formation by Streptococcus diacetilactis and Leuconostoc citrovorum. J. Bacteriol. 82:954–959
    [Google Scholar]
  16. Herbert B. N., Gilbert P. D., Stockdale H., Watkinson R. J. 1985 Factors controlling the activity of sulphate-reducing bacteria in reservoirs during water injection. Proceedings of the Conference on Offshore Europe ‘85 Society of Petroleum Engineers publication 13978/10:1–10;
    [Google Scholar]
  17. Imhoff-Stuckle D., Pfennig N. 1983; Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov.. Arch. Microbiol. 136:194–198
    [Google Scholar]
  18. Janssen P. H., Harfoot C. G. 1990; Isolation of a Citrobacter species able to grow on malonate under strictly anaerobic conditions. J. Gen. Microbiol. 136:1037–1042
    [Google Scholar]
  19. Jeanthon C., Reysenbach A. L., L’Haridon S., Gambacorta A., Pace N. R., Glénat P., Prieur D. 1995; Thennotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir.. Arch. Microbiol. 164:91–97
    [Google Scholar]
  20. Magot M., Caumette P., Desperrier J. M., Matheron R., Dauga C., Grimont F., Carreau L. 1992; Desulfovibrio longus sp. nov., a sulfate-reducing bacterium isolated from an oil-producing well. Int. J. Syst. Bacteriol. 42:398–403
    [Google Scholar]
  21. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1996; The Ribosomal Database Project (RDP). Nucleic Acids Res. 24:82–85
    [Google Scholar]
  22. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol. 3:195–206
    [Google Scholar]
  23. Owen R. J., Lapage S. P. 1976; The thermal denaturation of partly purified bacterial deoxyribonucleic acid and its taxonomic applications. J. Appl. Bacteriol. 41:335–340
    [Google Scholar]
  24. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; Fervidobacterium nodosum gen. nov. and spec, nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol. 141:63–69
    [Google Scholar]
  25. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; A simple and efficient method for preparing and dispensing anaerobic media. Biotechnol. Lett. 7:277–278
    [Google Scholar]
  26. Pfennig N., Wagener S. 1986; An improved method of preparing wet mounts for photomicrographs of microorganisms. J. Microbiol. Methods 4:303–306
    [Google Scholar]
  27. Ravot G., Magot M., Fardeau M. L., Patel B. K. C., Prensier G., Egan A., Garcia J. L., Ollivier B. 1995; Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int. J. Syst. Bacteriol. 45:308–314
    [Google Scholar]
  28. Rees G. N., Grassia G. S., Sheehy A. J., Dwivedi P. P., Patel B. K. C. 1995; Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int. J. Syst. Bacteriol. 45:85–89
    [Google Scholar]
  29. Saiki T., Kobayashi Y., Kawagoe K., Beppu T. 1985; Dictyoglomus thermophilum gen. nov., sp. nov., a chemoorganotrophic, anaerobic, thermophilic bacterium. Int. J. Syst. Bacteriol. 35:253–259
    [Google Scholar]
  30. Schink B. 1984; Fermentation of tartrate enantiomers by anaerobic bacteria, and description of two new species of strict anaerobes, Ruminococcus pasteurii and Ilyobacter tartaricus. Arch. Microbiol. 139:409–414
    [Google Scholar]
  31. Smibert R. M., Krieg N. R. 1981; General characterization. 409–443 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  32. Tanaka K., Nakamura K., Mikami E. 1991; Fermentation of S-citramalate, citrate, mesaconate and pyruvate by a gram-negative strictly anaerobic non-spore-former, Formivibrio citricus gen. nov., sp. nov.. Arch. Microbiol. 155:491–495
    [Google Scholar]
  33. Trüper H. G., Schlegel H. G. 1964; Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie Leeuwenhoek 30:225–238
    [Google Scholar]
  34. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. 3352–3378 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 2nd ed.. Springer-Verlag; New York, N.Y.:
    [Google Scholar]
  35. Wiegel J. 1992; The obligately anaerobic thermophilic bacteria. 105–184 Kristjansson J. K. Thermophilic bacteria CRC Press; Boca Raton, Fla.:
    [Google Scholar]
  36. Windberger E., Huber R., Trincone A., Fricke H., Stetter K. O. 1989; Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs. Arch. Microbiol. 151:506–512
    [Google Scholar]
  37. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J. Biol. Chem. 238:2882–2886
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-1-150
Loading
/content/journal/ijsem/10.1099/00207713-47-1-150
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error