gen. nov., sp. nov., an Alkaliphilic, Sulfate-Reducing Bacterium Free

Abstract

A new alkaliphilic, sulfate-reducing bacterium, strain Z-7935 (T = type strain), was isolated from a soda-depositing lake, Lake Magadi in Kenya. This organism is a motile vibrio which utilizes only hydrogen and formate as electron donors and sulfate, sulfite, and thiosulfate, but not sulfur, as electron acceptors. Thiosulfate is dismutated. Strain Z-7935 is an obligately sodium-dependent alkaliphile which grows in sodium carbonate medium and does not grow at pH 7; the maximum pH for growth is more than pH 10, and the optimum pH is 9.5 to 9.7. The optimum NaCl concentration for growth is 3% (wt/vol). The optimum temperature for growth is 37°C. The G+C content of the DNA is 48.6 mol%. 16S ribosomal DNA sequence analysis revealed that strain Z-7935 represents a new lineage with genus status in the delta subclass of the The name gen. nov., sp. nov. is proposed for this organism; the type strain of is strain Z-7935 (= DSM 9292).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-1-144
1997-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/1/ijs-47-1-144.html?itemId=/content/journal/ijsem/10.1099/00207713-47-1-144&mimeType=html&fmt=ahah

References

  1. Abd-el-Malek Y., Rizk S. G. 1963; Bacterial sulphate reduction and the development of alkalinity. III. Experiments under natural conditions. J. Appl. Bacteriol. 26:20–26
    [Google Scholar]
  2. Baker B. H. 195891 The geology of the Magadi area Geological Survey of Kenya; Nairobi, Kenya: Report no. 42
    [Google Scholar]
  3. Caumette P., Cohen Y., Matheron R. 1991; Isolation and characterization of Desulfovibrio halophilus sp. nov., a halophilic sulfate-reducing bacterium isolated from Solar Lake (Sinai). Syst. Appl. Microbiol. 14:33–38
    [Google Scholar]
  4. Cypionka H., Pfennig N. 1986; Growth yields of Desulfotomaculum orientis with hydrogen in chemostat culture. Arch. Microbiol. 143:396–399
    [Google Scholar]
  5. Ivanov M. V. 1956; Application of isotopes for the studying sulfate reduction in Lake Belovod. Mikrobiologiya 25:305–309
    [Google Scholar]
  6. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. 21–132 Munro H. N. Mammalian protein metabolism Academic Press; New York, N.Y.:
    [Google Scholar]
  7. Lysenko A., Pikuta E. Unpublished data
    [Google Scholar]
  8. Ollivier B., Hatchikian C. E., Prensier G., Guezennec J., Garcia J. L. 1991; Desulfohalobium retbaense gen. nov., sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal. Int. J. Syst. Bacteriol. 41:74–81
    [Google Scholar]
  9. Owen R. J., Hill R., Lapage S. P. 1969; Determination of DNA base composition from melting profiles in dilute buffers. Biopolymers 7:503–516
    [Google Scholar]
  10. Postgate J. R. 1984 The sulphate-reducing bacteria, 2nd ed.. Cambridge University Press; Cambridge, United Kingdom:
    [Google Scholar]
  11. Postgate J. R., Campbell L. L. 1966; Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol. Rev. 30:732–738
    [Google Scholar]
  12. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov.. Int. J. Syst. Bacteriol. 46:1088–1092
    [Google Scholar]
  13. Rueter P., Rabus R., Wilkes H., Aeckersberg F., Rainey F. A., Jannasch H. W., Widdel F. 1994; Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372:455–458
    [Google Scholar]
  14. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  15. Sorokin D. Y., Lysenko A. M., Mitushina L. L. 1996; Isolation and characterization of alkaliphilic heterotrophic bacteria, which oxidize reduced sulfur compounds to tetrationate. Microbiology 65:326–338
    [Google Scholar]
  16. Sorokin Y. 1966; Role of carbon dioxide and acetate in biosynthesis by sulfate-reducing bacteria. Nature 210:551–552
    [Google Scholar]
  17. Tindall B. J. 1986; Procaryotic life in the alkaline, saline, athalassic environment. 31–67 Rodriguez-Valera F. Halophilic bacteria CRC Press; Boca Raton, Fla.:
    [Google Scholar]
  18. Trüper H. G., Schlegel H. G. 1964; Sulphur methabolism in Thiorhodacaae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek. J. Microbiol. Serol. 30:225–238
    [Google Scholar]
  19. Vainshtein M., Hippe H., Kroppenstedt R. M. 1992; Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria. Syst. Appl. Microbiol. 15:554–566
    [Google Scholar]
  20. Vainshtein M. B., Laurinavichus C. S. 1988 Enumeration and cultivation of anaerobic bacteria Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences; Pushchino, Russia:
    [Google Scholar]
  21. Whitman W. B., Ankwanda E., Wolfe M. L. 1982; Nutrition and carbon metabolism of Methanococcus voltae. J. Bacteriol. 149:852–863
    [Google Scholar]
  22. Widdel F. 1987; New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov.. Arch. Microbiol. 148:286–291
    [Google Scholar]
  23. Widdel F. 1988; Microbiology and ecology of sulfate- and sulfur-reducing bacteria. 469–585 Zehnder A. J. B. Biology of anaerobic microorganisms John Wiley & Sons; New York, N.Y.:
    [Google Scholar]
  24. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J. Biol. Chem. 238:2882–2886
    [Google Scholar]
  25. Zavarzin G. A. 1993; Epicontinental alkaline water bodies as relict biotopes for the development of terrestrial biota. Microbiology 62:789–800
    [Google Scholar]
  26. Zavarzin G. A., Zhilina T. N., Pikuta E. V. 1996; Secondary anaerobes in the haloalkaliphilic communities in Tuva Lakes. Microbiologia 65:480–486
    [Google Scholar]
  27. Zhilina T. N., Zavarzin G. A. 1994; Alkaliphilic anaerobic community at pH 10. Curr. Microbiol. 29:109–112
    [Google Scholar]
  28. Zhilina T. N., Zavarzin G. A., Rainey F., Kevbrin V. V., Kostrikina N. A., Lysenko A. M. 1996; Spirochaeta alkalica sp. nov., Spirochaeta africana sp. nov., and Spirochaeta asiatica sp. nov., alkaliphilic anaerobes from the continental soda lakes in Central Asia and the East African Rift. Int. J. Syst. Bacteriol. 46:305–312
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-1-144
Loading
/content/journal/ijsem/10.1099/00207713-47-1-144
Loading

Data & Media loading...

Most cited Most Cited RSS feed