1887

Abstract

We describe a phylogenetic investigation of sensu lato, the causative agent of Lyme disease, based on a DNA sequence analysis of the gene, which encodes protein HBb, a member of the family of histone-like proteins. Because of their intimate contact with the DNA molecule, these proteins are believed to be fairly conserved through evolution. In this study we proved that the gene is suitable for phylogenetic inference in the genus . The gene, which is 327 bp long and encodes 108 amino acids, was sequenced for 39 strains, including 37 strains of sensu lato, 1 strain of , and 1 strain of . Genetic variability was determined at the sequence level by computational analysis. Briefly, 81 substitutions were scored at the DNA level. Only 25 of these substitutions were responsible for amino acid substitutions at the translational level. The signature region for bacterial histone-like proteins was found in . Although variable at the nucleotide level, it was highly conserved at the deduced amino acid level. A phylogenetic tree for the genus that was generated from multiple sequence alignments was consistent with previously published data derived from DNA-DNA hybridization and multilocus enzyme electrophoresis analyses. The subdivision of sensu lato into five species ( sensu stricto, , and ”) and at least four genomic groups (groups PotiB2, VS116, CA2, and DN127) was confirmed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-1-1
1997-01-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/1/ijs-47-1-1.html?itemId=/content/journal/ijsem/10.1099/00207713-47-1-1&mimeType=html&fmt=ahah

References

  1. Anthonissen F. M., De Kesel M., Hoet P. P., Bigaignon G. H. 1994; Evidence for the involvement of different genospecies of Borrelia in the clinical outcome of Lyme disease in Belgium. Res. Microbiol. 145:327–331
    [Google Scholar]
  2. Assous M. V., Postic D., Paul G., Névot P., Baranton G. 1993; Western blot analysis of sera from Lyme borreliosis patients according to the genomic species of the Borrelia strains used as antigens. Eur. J. Clin. Microbiol. Infect. Dis. 12:261–268
    [Google Scholar]
  3. Assous M. V., Postic D., Paul G., Névot P., Baranton G. 1994; Individualisation of two genomic groups among American Borrelia burgdorferi sensu lato strains. FEMS Microbiol. Lett. 121:93–98
    [Google Scholar]
  4. Balmelli T., Piffaretti J.-C. 1995; Association between different clinical manifestations of Lyme disease and different species of Borrelia burgdorferi sensu lato. Res. Microbiol. 146:329–340
    [Google Scholar]
  5. Balmelli T., Piffaretti J.-C. 1996; Analysis of the genetic polymorphism of Borrelia burgdorferi sensu lato by multilocus enzyme electrophoresis. Int. J. Syst. Bacteriol. 46:167–172
    [Google Scholar]
  6. Baranton G., Postic D., Girons I. Saint, Boerlin P., Piffaretti J.-C., Assous M., Grimont P. A. D. 1992; Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS 461 associated with Lyme borreliosis. Int. J. Syst. Bacteriol. 42:378–383
    [Google Scholar]
  7. Benachenhou-Lahfa N., Labedan B., Forterre P. 1994; PCR-mediated cloning and sequencing of the gene encoding glutamate dehydrogenase from the archaeon Sulfolobus shibatae: identification of putative amino-acid signatures for extremophilic adaptation. Gene 140:17–24
    [Google Scholar]
  8. Boerlin P., Péter O., Bretz A. G., Postic D., Baranton G., Piffaretti J.-C. 1992; Population genetics of Borrelia burgdorferi isolates by multilocus enzyme electrophoresis. Infect. Immun. 60:1677–1683
    [Google Scholar]
  9. Boerlin P., Rocourt J., Grimont F., Grimont P. A. D., Jacquet C., Piffaretti J.-C. 1992; Listeria ivanovii subsp. londoniensis subsp. nov. Int. J. Syst. Bacteriol. 42:69–73
    [Google Scholar]
  10. Brown J. R., Masuchi Y., Robb F. T., Doolittle W. F. 1994; Evolutionary relationships of bacterial and archaeal glutamine synthetase genes. J. Mol. Evol. 38:566–576
    [Google Scholar]
  11. Burgdorfer W., Barbour A. G., Hayes S. F., Nenach J. L., Gruwldt E., Davies J. P. 1982; Lyme disease a tick borne spirochetosis?. Science 216:1317–1319
    [Google Scholar]
  12. Canica M. M., Nato F., du Merle L., Mazie J. C., Baranton G., Postic D. 1993; Monoclonal antibodies for identification of Borrelia afzelii sp. nov. associated with late cutaneous manifestations of Lyme borreliosis. Scand. J. Infect. Dis. 25:441–448
    [Google Scholar]
  13. Caporale D. A., Kocher T. D. 1994; Sequence variation in the outer-surface-protein genes of Borrelia burgdorferi. Mol. Biol. Evol. 11:51–64
    [Google Scholar]
  14. Drlica K., Rouviere-Yaniv J. 1987; Histone-like proteins of bacteria. Microbiol. Rev. 51:301–319
    [Google Scholar]
  15. Dykhuizen E. D., Polin D. S., Dunn J. J., Wilske B., Preac-Mursic V., Dattwyler R. J., Luft B. J. 1993; Borrelia burgdorferi is clonal: implications for taxonomy and vaccine development. Proc. Natl. Acad. Sei. USA 90:10163–10167
    [Google Scholar]
  16. Felsenstein J. 1993 PHYLIP (phylogeny inference package), version 3.5c Department of Genetics, University of Washington; Seattle:
    [Google Scholar]
  17. Friedman D. I. 1988; Integration host factor: a protein for all reasons. Cell 55:545–554
    [Google Scholar]
  18. Fukunaga M., Koreki Y. 1995; The flagellin gene of Borrelia miyamotoi sp. nov. and its phylogenetic relationship among Borrelia species. FEMS Microbiol. Lett. 34:255–258
    [Google Scholar]
  19. Gassmann G. S., Jacobs E., Deutzmann R., Gobel U. B. 1991; Analysis of the Borrelia burgdorferi GeHo fla gene and antigenic characterization of its gene product. J. Bacteriol. 173:1452–1459
    [Google Scholar]
  20. Gupta R. S. 1995; Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol. Microbiol. 15:1–11
    [Google Scholar]
  21. Haluzi H., Goitein D., Koby S., Mendelson I., Teff D., Mengeritsky G., Giladi H., Oppenheim A. B. 1991; Genes coding for integration host factor are conserved in gram-negative bacteria. J. Bacteriol. 173:6297–6299
    [Google Scholar]
  22. Higgins D. G., Bleasby A. J., Fuchs R. 1991; CLUSTAL V: improved software for multiple sequence alignment. CABIOS 8:189–191
    [Google Scholar]
  23. Higgins D. G., Sharp P. M. 1988; Fast and sensitive multiple sequence alignments on a microcomputer. CABIOS 5:151–153
    [Google Scholar]
  24. Hyde F. W., Johnson R. C. 1984; Genetic relationship of Lyme disease spirochetes to Borrelia, Treponema, and Leptospira spp. J. Clin. Microbiol. 20:151–154
    [Google Scholar]
  25. Jauris S., Rücknagel K. P., Schwarz W. H., Kratzsch P., Bronnenmeier K., Staudenbauer W. L. 1990; Sequence analysis of the Clostridium stercorarium celZ gene encoding a thermoactive cellulase (Avicelase I): identification of a catalytic and cellulose-binding domains. Mol. Gen. Genet. 223:258–267
    [Google Scholar]
  26. Jauris-Heipke S., Liegl G., Preac-Mursic V., Rössler D., Schwab E., Soutschek E., Will G., Wilske B. 1995; Molecular analysis of genes encoding outer surface protein C (OspC) of Borrelia burgdorferi sensu lato: relationship to ospA genotype and evidence of lateral gene exchange of ospC. J. Clin. Microbiol. 33:1860–1866
    [Google Scholar]
  27. Karlin S., Weinstock G. M., Brendel V. 1995; Bacterial classifications derived from RecA protein sequence comparisons. J. Bacteriol. 177:6881–6893
    [Google Scholar]
  28. Kawabata H., Masuzawa T., Yanagihara Y. 1993; Genomic analysis of Borrelia japonica sp. nov. isolated from Ixodes ovatus in Japan. Microbiol. Immunol. 37:843–848
    [Google Scholar]
  29. Kumada Y., Benson D. R., Hillemann D., Hosted T. J., Rochefor D. A., Thompson C. J., Wohlleben W., Tateno Y. 1993; Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes. Proc. Natl. Acad. Sei. USA 90:3009–3013
    [Google Scholar]
  30. Livesley M. A., Thompson I. P., Gem L., Nuttal P. A. 1993; Analysis of intra-specific variation in the fatty acid profiles of Borrelia burgdorferi. J. Gen. Microbiol. 139:2197–2201
    [Google Scholar]
  31. Livey I., Gibbs C. P., Schuster R., Dorner F. 1995; Evidence for lateral transfer and recombination in OspC variation in Lyme disease Borrelia. Mol. Microbiol. 18:257–269
    [Google Scholar]
  32. Marconi R. T., Garon C. F. 1992; Identification of a third genomic group of Borrelia burgdorferi through signature nucleotide analysis and 16S rRNA sequence determination. J. Gen. Microbiol. 138:533–536
    [Google Scholar]
  33. Marconi R. T., Garon C. F. 1992; Phylogenetic analysis of the genus Borrelia: a comparison of North American and European isolates of Borrelia burgdorferi. J. Bacteriol. 174:241–244
    [Google Scholar]
  34. Marconi R. T., Liveris D., Schwartz I. 1995; Identification of novel insertion elements, restriction fragment length polymorphism patterns, and discontinuous 23S rRNA in Lyme disease spirochetes: phylogenetic analyses of rRNA genes and their intergenic spacers in Borrelia japonica sp. nov. and genomic group 21038 (Borrelia andersonii sp. nov.) isolates. J. Clin. Microbiol. 33:2427–2434
    [Google Scholar]
  35. Marconi R. T., Samuels D. S., Landry R. K., Garon C. F. 1994; Analysis of the distribution and molecular heterogeneity of the ospD gene among the Lyme disease spirochetes: evidence for lateral gene exchange. J. Bacteriol. 176:4572–4582
    [Google Scholar]
  36. Mendelson I., Gottesman M., Oppenheim A. B. 1991; HU and integration host factor function as auxiliary proteins in cleavage of phage lambda cohesive ends by terminase. J. Bacteriol. 173:1670–1676
    [Google Scholar]
  37. Noppa L., Burman N., Sadziene A., Barbour A. G., Bergström S. 1995; Expression of the flagellin gene in Borrelia is controlled by an alternative σ factor. Microbiology (Washington, D.C.) 141:85–93
    [Google Scholar]
  38. Oberto J., Drlica K., Rouvière-Yaniv J. 1994; Histones, HGM, HU, IHF: même combat. Biochimie 76:901–908
    [Google Scholar]
  39. Postic D., Assous M. V., Grimont P. A. D., Baranton G. 1994; Diversity of Borrelia burgdorferi sensu lato evidenced by restriction fragment length polymorphism of rrf 5S-rrl 23S intergenic amplicons. Int. J. Syst. Bacteriol. 44:743–752
    [Google Scholar]
  40. Rivera M.C, Lake J. A. 1992; Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257:74–76
    [Google Scholar]
  41. Rössler D., Eiffert H., Jauris-Heipke S., Lehnert G., Preac-Mursic V., Teepe J., Schlott T., Soutschek E., Wilske B. 1995; Molecular and immunological characterization of the p83/100 protein of various Borrelia burgdorferi sensu lato strains. Med. Microbiol. Immunol. 184:23–32
    [Google Scholar]
  42. Schmid M. B. 1990; More than just histone-like proteins. Cell 63:451–453
    [Google Scholar]
  43. Seiander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S. 1986; Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl. Environ. Microbiol. 51:873–884
    [Google Scholar]
  44. Sonnhammer E. L. L., Kahn D. 1994; The modular arrangement of proteins as inferred from analysis of homology. Protein Sei. 3:482–492
    [Google Scholar]
  45. Tanaka I., Appelt K., Dijk J., White S. W., Wilson K. S. 1984; Å resolution structure of a protein with histone-like properties in prokaryotes. Nature 310:376–381
    [Google Scholar]
  46. Theisen M., Borre M., Matheisen M. J., Mikkelsen B., Lebech A.-M., Hansen K. 1995; Evolution of the Borrelia burgdorferi outer surface protein OspC. J. Bacteriol. 177:3036–3044
    [Google Scholar]
  47. Theisen M., Frederiksen B., Lebech A.-M., Vuust J., Hansen K. 1993; Polymorphism in ospC of Borrelia burgdorferi and immunoreactivity of OspC protein as diagnostic antigen. J. Clin. Microbiol. 31:2570–2576
    [Google Scholar]
  48. Tiboni O., Cammarano P., Sanangelantoni A. M. 1993; Cloning and sequencing of the gene encoding glutamine synthetase I from the archeum Pyrococcus woesi: anomalous phylogenies inferred from analysis of archeal and bacterial glutamine synthetase I sequences. J. Bacteriol. 175:2271–2277
    [Google Scholar]
  49. Tilly K., Fuhrman J., Campbell J., Samuels D. S. 1996; Isolation of Borrelia burgdorferi genes encoding homologs of DNA-binding protein HU and ribosomal protein S20. Microbiology 142:2471–2479
    [Google Scholar]
  50. Valsangiacomo C, Balmelli T., Piffaretti J.-C. A nested polymerase chain reaction for the detection of Borrelia burgdorferi sensu lato based on the hbb gene. FEMS Microbiol. Lett. in press
    [Google Scholar]
  51. van Dam A. J., Kuiper H., Vos K., Widjojkusumo A., de Jongh B. M., Spanjaard L., Ramselaar A. C. P., Kramer D. M., Dankert J. 1993; Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestation of Lyme disease. Clin. Infect. Dis. 17:708–717
    [Google Scholar]
  52. Viale A. M., Arakaki A. K. 1994; The chaperone connection to the origins of the eukaryotic organelles. FEBS Lett. 341:146–151
    [Google Scholar]
  53. Wallich R., Helmes C., Schaible U. E., Lobet Y., Moter S. E., Kramer M. D., Simon M. M. 1992; Evaluation of genetic divergence among Borrelia burgdorferi isolates by use of OspA, fla, HSP60, and HSP70 gene probes. Infect. Immun. 60:4856–04866
    [Google Scholar]
  54. Wil G., Jauris-Heipke S., Schwab E., Busch U., Rössler D., Soutschek D., Wilske B., Preac-Mursic V. 1995; Sequence analysis of ospA genes shows homogeneity within Borrelia burgdorferi sensu stricto and Borrelia afzelii strains but reveals major subgroups within the Borrelia garinii species. Med. Microbiol. Immunol. 184:73–80
    [Google Scholar]
  55. Wilske B., Jauris-Heipke S., Lobentanzer R., Pradel I., Preac-Mursic V., Rössler D., Soutschek E., Johnson R. C. 1995; Phenotypic analysis of outer surface protein C (ospC) of Borrelia burgdorferi sensu lato by monoclonal antibodies: relationship to genospecies and ospA serotype. J. Clin. Microbiol. 33:103–109
    [Google Scholar]
  56. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-1-1
Loading
/content/journal/ijsem/10.1099/00207713-47-1-1
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error