1887

Abstract

A gram-negative bacterium which was capable of oxidizing reduced inorganic sulfur compounds was isolated from agricultural soil and designated BI-42. This new isolate grew on a wide range of organic substrates but was not able to grow autotrophically and lacked ribulose 1,5-bisphosphate carboxylase, a key enzyme of carbon dioxide fixation. These results suggested that strain BI-42 was a chemolithoheterotroph. Ammonia and nitrate were not used as sole nitrogen sources for growth, and strain BI-42 lacked glutamate synthase activity, which resulted in glutamate auxotrophy. The glutamate dehydrogenase activity of this organism was apparently insufficient for ammonia assimilation. On the basis of the results of additional biochemical tests, the G+C content of the DNA, the results of a respiratory ubiquinone analysis, the results of a 16S ribosomal DNA sequence analysis, the fatty acid composition, and the results of a membrane lipid analysis, strain BI-42 was identified as a phylogenetically and physiologically distinct taxon belonging to the alpha subclass of the gen. nov., sp. nov. is the name proposed for this taxon.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-4-981
1996-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/4/ijs-46-4-981.html?itemId=/content/journal/ijsem/10.1099/00207713-46-4-981&mimeType=html&fmt=ahah

References

  1. Berglund F., Sorbo B. H. 1960; Turbidimetric analysis of inorganic sulfate in serum, plasma and urine. Scand. J. Clin. Lab. Invest 12:147–150
    [Google Scholar]
  2. Bregoff H. M., Roberts E. E., Delwiche C. C. 1953; Paper chromatography of quaternary ammonium bases and related compounds. J. Biol. Chern 205:565–574
    [Google Scholar]
  3. Cruickshank R., Duguid J. P., Marmion B. P., Swain R. H. A. 1975 The practice of medical microbiology. , 12th. 2 Longman Group; Ltd., Churchill Livingstone, New York:
    [Google Scholar]
  4. Das P. K., Basu M., Chatterjee G. C. 1979; Lipid profile of the strains of Agrobacterium tumefaciens in relation to agrocin resistance. J. Gen. Appl. Microbiol 25:1–9
    [Google Scholar]
  5. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  6. Friedrich C. G., Mitrenga G. 1981; Oxidation of thiosulfate by Paracoccus denitrificans and other hydrogen bacteria. FEMS Microbiol. Lett 10:209–212
    [Google Scholar]
  7. Gleen H., Quastel J. H. 1952; Sulfur metabolism in soil. Appl. Microbiol 1:70–77
    [Google Scholar]
  8. Gommers P. J. F., Kuenen J. G. 1988; Thiobacillus strain Q, a chemolithoheterotrophic sulfur bacterium. Arch. Microbiol 150:117–125
    [Google Scholar]
  9. Green P. N., Bousfield I. J. 1982; A taxonomic study of some gramnegative facultatively methylotrophic bacteria. J. Gen. Microbiol 128:623–638
    [Google Scholar]
  10. Holliday R. 1956; A new method for identification of biochemical mutants of microorganisms. Nature (London) 178:987
    [Google Scholar]
  11. Jenkins O., Jones D. 1987; Taxonomic studies on some gram negative methylotrophic bacteria. J. Gen. Microbiol 133:453–473
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  13. Katayama-Fujimura Y., Kuraishi H. 1980; Characterization of Thiobacillus novellus and its thiosulfate oxidation. J. Gen. Appl. Microbiol 26:357–367
    [Google Scholar]
  14. Katayama-Fujimura Y., Tsuzaki N., Kuraishi H. 1982; Ubiquinone, fatty acid and DNA base composition determination as a guide to the taxonomy of the genus Thiobacillus. J. Gen. Microbiol 128:1599–1611
    [Google Scholar]
  15. Kelly D. P., Chambers L. A., Trudinger P. A. 1969; Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate. Anal. Chern 41:898–901
    [Google Scholar]
  16. Kelly D. P., Wood A. P., Gottschal J. C., Kuenen J. G. 1979; Autotrophic metabolism of formate by Thiobacillus strain A2. J. Gen. Microbiol 114:1–13
    [Google Scholar]
  17. Kritchevsky D., Kirk M. C. 1952; Detection of steroids in paper chromatography. Arch. Biochem. Biophys 35:346–351
    [Google Scholar]
  18. Kuenen J. G. 1989 The colourless sulfur bacteria. 1834–1837 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 Williams and Wilkins; Baltimore:
    [Google Scholar]
  19. Kuenen J. G., Beudeker R. F. 1982; Microbiology of thiobacilli and other sulphur-oxidising autotrophs, mixotrophs and heterotrophs. Phil. Trans. R. Soc. Lond. B Biol. Sci 298:473–497
    [Google Scholar]
  20. Kuykendall L. D., Roy M. D., Neill J. J. O., Devine T. E. 1988; Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int. J. Syst. Bacteriol 38:358–361
    [Google Scholar]
  21. Lisboa B. P. 1964; Characterization of A4-3-oxo-C21-steroids on thin-layer chromatograms by “in situ” colour reactions. J. Chromatogr 16:136–151
    [Google Scholar]
  22. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. J. Biol. Chern 193:265–275
    [Google Scholar]
  23. Mackenzie S. L., Lapp M. S., Child J. J. 1979; Fatty acid composition of Rhizobium spp. Can. J. Microbiol 25:68–74
    [Google Scholar]
  24. Maidak B. L., Larsen N., McCaughey M. A., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res 22:3485–3487
    [Google Scholar]
  25. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  26. Maulik P., Ghosh S. 1986; NADPH/NADH-dependent cold-labile glutamate dehydrogenase in Azospirillum brasilense. Purification and properties. Eur. J. Biochem 155:595–602
    [Google Scholar]
  27. Meers J. L., Tempest D. W., Brown C. M. 1970; Glutamine (amide): 2-oxoglutarate aminotransferase oxido reductase (NADP), an enzyme involved in the synthesis of glutamate by some bacteria. J. Gen. Microbiol 64:187–194
    [Google Scholar]
  28. Miller R. E., Shelton E., Stadtman E. R. 1974; Zinc-induced paracrystalline aggregation of glutamine synthetase. Arch. Biochem. Biophys 163:155–171
    [Google Scholar]
  29. Patton A. R., Chism P. 1951; Quantitative paper chromatography of amino acids: an evaluation of techniques. Anal. Chem 23:1683–1689
    [Google Scholar]
  30. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta thermophila: its phylogenetic position and implications for the systematics of the order Spirochaetales. Syst. Appl. Microbiol 15:197–202
    [Google Scholar]
  31. Rittenberg S. C. 1969; The role of exogenous organic matter in the physiology of chemolithotrophic bacteria. Adv. Microb. Physiol 3:159–196
    [Google Scholar]
  32. Robertson L. A., Kuenen J. G. 1983; Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulfur bacterium. J. Gen. Microbiol 129:2847–2855
    [Google Scholar]
  33. Romanovskaya V. A., Malashenko Y. R., Grishchenko N. I. 1980; Diagnosis of methane oxidizing bacteria by numerical methods based on the cellular fatty acid makeup. Mikrobiologiya 49:969–975
    [Google Scholar]
  34. Santer M., Boyer J., Santer U. 1959; Thiobacillus novellus. I. Growth on organic and inorganic media. J. Bacteriol 78:197–202
    [Google Scholar]
  35. Schook L. B., Berk R. S. 1978; Nutritional studies with Pseudomonas aeruginosa grown on inorganic sulfur sources. J. Bacteriol 133:1377–1382
    [Google Scholar]
  36. Sharma D. P., Thomas C., Hall R. H., Levine M. M., Attridge S. R. 1989; Significance of toxin-coregulated pili as protective antigens of Vibrio cholerae in the infant mouse model. Vaccine 7:451–456
    [Google Scholar]
  37. Shaw N. 1968; The detection of lipids on thin-layer chromatograms with the periodate Schiff reagent. Biochim. Biophys. Acta 164:435–436
    [Google Scholar]
  38. Smith A. J. 1966; The role of tetrathionate in the oxidation of thiosulfate by Chromatium sp. strain. D. J. Gen. Microbiol 42:371–380
    [Google Scholar]
  39. Sorokin D. Y. 1992; Catenococcus thiocyclus gen. nov. sp. nov.–a new facultatively anaerobic bacterium from a near-shore sulphidic hydrothermal area. J. Gen. Microbiol 138:2287–2292
    [Google Scholar]
  40. Stackebrandt E., Charfreitag O. 1990; Partial 16S rRNA primary structure of five Actinomyces species: phylogenetic implications and development of an Actinomyces zsraete-specific oligonucleotide probe. J. Gen. Microbiol 136:37–43
    [Google Scholar]
  41. Starkey R. L. 1934; The production of polythionates from thiosulfate by microorganisms. J. Bacteriol 28:387–400
    [Google Scholar]
  42. Starkey R. L. 1935; Isolation of some bacteria which oxidize thiosulfate. Soil Sci 39:197–219
    [Google Scholar]
  43. Stolp H., Gadkari D. 1981 Nonpathogenic members of the genus Pseudomonas. 719–741 Starr M. P., Stolp H., Triiper H. G., Balows A., Schlegel H. G.ed The prokaryotes 1 Springer-Verlag; Berlin:
    [Google Scholar]
  44. Suzuki I. 1974; Mechanisms of inorganic oxidation and energy coupling. Annu. Rev. Microbiol 28:85–101
    [Google Scholar]
  45. Suzuki L, Silver M. 1965; The initial product and properties of the sulfur oxidizing enzyme of thiobacilli. Biochim. Biophys. Acta 122:2233
    [Google Scholar]
  46. Taylor B. F., Hoare D. S. 1969; New facultative Thiobacillus and a réévaluation of the heterotrophic potential of Thiobacillus novellus. J. Bacteriol 100:487–497
    [Google Scholar]
  47. Tindall B. J. 1990; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst. Appl. Microbiol 13:128–130
    [Google Scholar]
  48. Tindall B. J. 1990; Lipid composition of Halobacterium lucusprofundi. FEMS Microbiol. Lett 66:199–202
    [Google Scholar]
  49. Truper H. G., Schlegel H. G. 1964; Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek 30:225–238
    [Google Scholar]
  50. Tuttle J. H., Holmes P. E., Jannasch H. W. 1974; Growth rate stimulation of marine pseudomonads by thiosulfate. Arch. Microbiol 99:1–14
    [Google Scholar]
  51. Tuttle J. H., Jannasch H. W. 1972; Occurrence and types of Thiobacillus-like bacteria in the sea. Limnol. Oceanogr 17:532–543
    [Google Scholar]
  52. Vishniac W. 1952; The metabolism of Thiobacillus thioparus. I. The oxidation of thiosulfate. J. Bacteriol 64:363–373
    [Google Scholar]
  53. Vishniac W., Santer M. 1957; The thiobacilli. Bacteriol. Rev 21:195–213
    [Google Scholar]
  54. Vitolins M. I., Swaby R. J. 1969; Activity of sulfur-oxidizing microorganisms in some Australian soils. Austr. J. Soil Res 7:171–183
    [Google Scholar]
  55. Widdel F., Pfenning N. 1984 Dissimilatory sulfateor sulfur-reducing bacteria. 663–679 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 Williams and Wilkins; Baltimore:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-4-981
Loading
/content/journal/ijsem/10.1099/00207713-46-4-981
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error