1887

Abstract

The operon that encodes methyl coenzyme M reductase (MR) in the hyperthermophile was cloned and sequenced. The results of a phylogenetic analysis of the nine MR sequences now available support the position that is a separate methanogen lineage. As in other methanogens, the operon is located immediately upstream of the gene, the promoter-proximal gene in an operon that encodes the -methyltetrahydromethanopterin:coenzyme M methyltransferase that catalyzes the step preceding the MR-catalyzed reaction in methanogenesis. In contrast to other methanogens and hyperthermophilic members of the . CG dinucleotides and CG-containing codons occur frequently in DNA. The MR subunit-encoding genes are preceded by sequences consistent with ribosome binding sites, indicating that mRNA-rRNA base pairing can still direct translation initiation in cells growing at temperatures above 100°C.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-4-1170
1996-10-01
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/4/ijs-46-4-1170.html?itemId=/content/journal/ijsem/10.1099/00207713-46-4-1170&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. F., Magrum L. J., Woese C. R., Wolfe R. S. B. 1979; Methanogens: re-evaluation of a unique biological group. Microbiol. Rev 43:260–296
    [Google Scholar]
  2. Brown J. W., Daniels C. J., Reeve J. N. 1989; Gene structure, organization and expression in archaebacteria. Crit. Rev. Microbiol 16:287–338
    [Google Scholar]
  3. Burggraf S., Stetter K. O., Rouviere P., Woese C. R. 1991; Methanopyrus kandleri: an archaeal methanogen unrelated to all other known methanogens. Syst. Appl. Microbiol 14:346–351
    [Google Scholar]
  4. Coulondre C., Miller J. H., Farabaugh P. J., Gilbert W. 1978; Molecular basis of base substitution hotspots in Escherichia coli. Nature (London) 274:775–780
    [Google Scholar]
  5. Cram D. S., Sherf B. A., Libby R. T., Mattaliano R. J., Ramachandran K. L., Reeve J. N. 1987; Structure and expression of the genes, mcrBDCGA, which encode the subunits of component C of methyl coenzyme M reductase in Methanococcus vannielii. Proc. Natl. Acad. Sci. USA 84:3992–3996
    [Google Scholar]
  6. DiRuggiero J., Borges K. M., Robb F. T. 1995 Codon usage tables for thermophilic archaea. 191–194 Robb F. T., Place A. R., Sowers K. R., Schreier H. J., DasSarma S., Fleishmann E. M.ed Archaea: a laboratory manual Cold Spring Harbor Press; Cold Spring Harbor, N.Y:
    [Google Scholar]
  7. Ehrlich M., Gama-Sosa M. A., Camera L. H., Ljundahl L. G., Kuo K. C., Gehrke C. W. 1985; DNA methylation in thermophylic bacteria: N4-methylcytosine, 5-methylcytosine, and N6-methyladenine. Nucleic Acids Res 13:1399–1412
    [Google Scholar]
  8. Ferry J. G. 1993 Methanogenesis Ecology; physiology, biochemistry and genetics. Chapman & Hall, New York:
    [Google Scholar]
  9. Garcia J. L. 1990; Taxonomy and ecology of methanogens. FEMS Microbiol. Rev 87:297–308
    [Google Scholar]
  10. Harms U., Weiss D. S., Gärtner P., Linder D., Thauer R. K. 1995; The energy conserving N5-methyltetrahydromethanoptcrimcoenzyme M methyl transferase complex from Methanobacterium thermoautotrophicum is composed of eight different subunits. Eur. J. Biochem 228:640–648
    [Google Scholar]
  11. Hartzell P. L., Wolfe R. S. 1986; Comparative studies of component C from the methyl reductase system of different methanogens. Syst. Appl. Microbiol 7:568–577
    [Google Scholar]
  12. Hennigan A. N., Reeve J. N. 1994; mRNAs in the methanogenic archaeon Methanococcus vannielii: numbers, half-lives and processing. Mol. Microbiol 11:655–670
    [Google Scholar]
  13. Huber R., Kurr M., Jannasch H. W., Stetter K. O. 1989; A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110°C. Nature (London) 342:833–834
    [Google Scholar]
  14. Jones W. J., Nagle D. P. Jr., Whitman W. B. 1987; Methanogens and the diversity of archaebacteria. Microbiol. Rev 51:135–177
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism III Academic Press; New York:
    [Google Scholar]
  16. Kandler O., König K. 1993 Cell envelopes of archaea: structure and chemistry. 223–259 Kates M., Kushner D. J., Matheson A. T.ed The biochemistry of Archaea (Archaebacteria) Elsevier Science Publishers B.V.; Amsterdam:
    [Google Scholar]
  17. Kimura M. 1983 The neutral theory Cambridge University Press; London:
    [Google Scholar]
  18. Klein A., Allmansberger R., Bokranz M., Knaub S., Müller B., Muth E. 1988; Comparative analysis of genes encoding methyl coenzyme M reductase in methanogenic bacteria. Mol. Gen. Genet 213:409–420
    [Google Scholar]
  19. Knurr M., Huber R., König H., Jannasch H. W., Fricke H., Trincone A., Kristjansson J. K., Stetter K. O. 1991; Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch. Microbiol 156:239–247
    [Google Scholar]
  20. Lake J. A. 1994; Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc. Natl. Acad. Sci. USA 91:1455–1459
    [Google Scholar]
  21. Lehmacher A., Klenk H.-P. 1994; Characterization and phylogeny of mcrll, a gene cluster encoding an isoenzyme of methyl coenzyme M reductase from hyperthermophilic Methanothermus fervidus. Mol. Gen. Genet 243:198–206
    [Google Scholar]
  22. Nölling J. 1996 Unpublished data
  23. Nölling J., Pihl T. D., Reeve J. N. 1995; Cloning, sequencing, and growth phase-dependent transcription of the coenzyme F420-dependent N5,N10-methylenehydromethanopterin reductase-encoding genes from Methanobacterium thermoautotrophicum ΔH and Methanopyrus kandleri. J. Bacteriol 177:7238–7244
    [Google Scholar]
  24. Pihl T. D., Sharma S., Reeve J. N. 1994; Growth phase-dependent transcription of the genes that encode the two methyl coenzyme M reductase isoenzymes and N5-methyltetrahydromethanopterinxoenzyme M methyl transferase in Methanobacterium thermoautotrophicum ΔH. J. Bacteriol 176:6384–6391
    [Google Scholar]
  25. Reeve J. N. 1992; Molecular biology of methanogens. Annu. Rev. Microbiol 46:165–191
    [Google Scholar]
  26. Rivera M., Lake J. A. 1996; The phylogeny of Methanopyrus kandleri. Int. J. Syst. Bacteriol 46:348–351
    [Google Scholar]
  27. Rospert S., Linder D., Ellermann J., Thauer R. K. 1990; Two genetically distinct methyl coenzyme M reductases in Methanobacterium thermoautotrophicum strains Marburg and ΔH. Eur. J. Biochem 194:871–877
    [Google Scholar]
  28. Sambrook J. E., Fritsch E. F., Maniatis T. 1989 Molecular cloning: a laboratory manual, 2nd. Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y:
    [Google Scholar]
  29. Shima S., Weiss D. S., Thauer R. K. 1995; Formylmethanofuran: tetrahydromethanopterin formyltransferase (Ftr) from the hyperthermophilic Methanopyrus kandleri. Cloning, sequencing and functional expression of the ftr gene and one-step purification of the enzyme overproduced in Escherichia coli. Eur. J. Biochem 230:906–913
    [Google Scholar]
  30. Springer E., Sachs M. S., Woese C. R., Boone D. R. 1995; Partial gene sequences for the A subunit on methyl-coenzyme M reductase (mcrl) as a phylogenetic tool for the family Methanosarcinaceae. Int. J. Syst. Bacteriol 45:554–559
    [Google Scholar]
  31. Stroup D., Reeve J. N. 1993; Association of the mcrD gene product with methyl coenzyme M reductase in Methanococcus vannielii. Biochim. Biophys. Acta 1203:175–183
    [Google Scholar]
  32. Thomas L. K., Dix D. B., Thompson R. C. 1988; Codon choice and gene expression: synonymous codons differ in their ability to direct aminoacylated transfer RNA binding to ribosomes in vitro. Proc. Natl. Acad. Sci. USA 85:4242–4246
    [Google Scholar]
  33. Weil C. F., Cram D. S., Sherf B. A., Reeve J. N. 1988; Structure and comparative analysis of the genes encoding component C of methyl coenzyme M reductase in the extremely thermophilic archaebacterium Methanothermus fervidus. J. Bacteriol 170:4718–4726
    [Google Scholar]
  34. Zirngibl C., van Dongen W., Schwörer B., van Bünan R., Richter M., Klein A., Thauer R. K. 1992; H2-forming methylenetetrahydromethanopterin dehydrogenase, a novel type of hydrogenase without iron-sulfur clusters in methanogenic archaea. Eur. J. Biochem 208:511–520
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-4-1170
Loading
/content/journal/ijsem/10.1099/00207713-46-4-1170
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error