1887

Abstract

Sixteen strains of cultivable mycobacteria were grown in Sauton’s medium, and was purified from armadillo liver. Cell extracts were prepared from log-phase growths of each of the cultivable mycobacterial strains. Superoxide dismutase (SOD) enzyme was purified from all cultivable mycobacterial strains included in the study, and antibodies against purified SOD enzyme were raised in rabbits. Immunological distances (ImDs) between these anti-SOD antibodies and SOD antigens were determined by a previously described immunoprecipitation method and by a recently developed enzyme-linked immunosorbent assay (ELISA) technique. The reciprocal ImDs among mycobacterial strains were constant, reproducible and consistent by these two methods. An evolutionary tree was constructed on the basis of estimated ImDs. Except for and , slowly and rapidly growing mycobacterial species appeared to be separately grouped by this analysis. Rapid growers clustered into a group which is near that of some slow-growing mycobacteria. falls almost in the middle of the evolutionary tree and the position of was found to be between those of and BCG. Measurement of immunological relatedness of SODs provides an alternative system with which to study the taxonomical relatedness among mycobacteria.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-4-1164
1996-10-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/4/ijs-46-4-1164.html?itemId=/content/journal/ijsem/10.1099/00207713-46-4-1164&mimeType=html&fmt=ahah

References

  1. Beauchamp C., Fridovich I. 1971; Superoxide dismutase: improved assay and an assay applicable to acrylamide gels. Anal. Biochem 44:276–287
    [Google Scholar]
  2. Chikata Y., Kusunose E., Ichihara K., Kusunose M. 1975; Purification of superoxide dismutase from M. phlei. Osaka City Med. J 21:127–136
    [Google Scholar]
  3. Cocks G. T., Wilson A. C. 1969; Immunological detection of single amino-acid substitutions in alkaline phosphatase. Science 164:188–189
    [Google Scholar]
  4. Cox R. A., Kempsell K., Fairclough L., Colston M. J. 1991; The 16S ribosomal RNA of Mycobacterium leprae contains a unique sequence which can be used for identification by polymerase chain reaction. J. Med. Microbiol 35:284–290
    [Google Scholar]
  5. Davis B. J. 1964; Disc electrophoresis methods and application to human serum protein. Ann. N. Y. Acad. Sci 121:404–427
    [Google Scholar]
  6. Draper P. 1980; Protocol for purification of M. leprae. WHO document no. TDR/IMMLEP-SWG (5)/80.3
  7. Feldman R. A., Hershfield E. 1974; Mycobacterial skin infections by an unidentified species: a report of 27 patients. Ann. Intern. Med 80:445–452
    [Google Scholar]
  8. Fridovich I. 1974; Superoxide dismutases. Adv. Enzymol 41:35–97
    [Google Scholar]
  9. Holbrook I. B., Leaver A. G. 1976; A procedure to increase the sensitivity of staining by Coomassie Brilliant Blue G-250 perchloric acid solution. Anal. Biochem 75:634–636
    [Google Scholar]
  10. Ichihara K., Kusunose E., Kasunose M., Mori T. 1977; Superoxide dismutase from Mycobacterium lepraemurium. J. Biochem 81:1427–1433
    [Google Scholar]
  11. Kakkar P., Das B., Vishwanathan P. N. 1984; A modified spectrophotometric assay of superoxide dismutase. Indian J. Biochem. Biophys 21:130–143
    [Google Scholar]
  12. Katoch V. M., Shivannavar C. T., Datta A. K. 1989; Studies on ribosomal RNA genes of mycobacteria including M. leprae. Acta. Leprol 7:Suppl. 1231–233
    [Google Scholar]
  13. Katoch V. M., Shivannavar C. T., Datta A. K., Sharma V. D. 1987; The evaluation of immunological relatedness of superoxide dismutase in taxonomic identification. Indian J. Med. Microbiol 5:17–24
    [Google Scholar]
  14. Katoch V. M., Wayne L. G., Diaz G. A. 1982; Characterization of catalase by micro-immunoprecipitation in tissue derived cells of Mycobacterium lepraemurium TMC 1701. Int. J. Syst. Bacteriol 32:416–418
    [Google Scholar]
  15. Katoch V. M., Wayne L. G., Diaz G. A. 1982; Serological approaches for the characterization of catalase in tissue derived Mycobacterium leprae. Ann. Inst. Pasteur Microbiol 133B:407–414
    [Google Scholar]
  16. Keele B. B. Jr., McCord J. M., Fridovich I. 1970; Superoxide dismutase from Escherichia coli B. A new manganese-containing enzyme. J. Biol. Chem 245:6176–6181
    [Google Scholar]
  17. Kirschenbaum D. M. 1977; Molar absorptivity and A 1% values for protein of selected wavelengths of the ultraviolet and visible regions. Anal. Biochem 82:83–100
    [Google Scholar]
  18. Kusunose E., Ichihara K., Nada Y., Kusunose M. 1976; Superoxide dismutase from Mycobacterium tuberculosis. J. Bacteriol 80:1342–1352
    [Google Scholar]
  19. Kusunose E., Kusunose M., Ichihara K., Izumi S. 1981; Superoxide dismutase in cell-free extracts from M. leprae grown in armadillo liver. FEMS Microbiol. Lett 10:49–52
    [Google Scholar]
  20. Loewenstein E. 1930; Die Methodik der Reinkultur von tuberkelbacillen aus dem Blute. Dtsch. Med. Wochenschr 56:1010
    [Google Scholar]
  21. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the folin phenol reagent. J. Biol. Chem 193:265–275
    [Google Scholar]
  22. Mayer B. K., Falkinham J. O. III 1986; Superoxide dismutase activity of Mycobacterium avium, M. intracellulare, and M. scrofulaceum. Infect. Immun 53:631–635
    [Google Scholar]
  23. McFadden J. J. 1990 DNA probes for detection and identification. 139–172 McFadden J. J.ed Molecular biology of mycobacteria Surrey University Press; Academic Press, London:
    [Google Scholar]
  24. Minnikin D. E., Goodfellow M. 1980 Lipid composition in classification and identification of acid-fast bacteria. 184–256 Goodfellow M., Board R. G.ed Microbiological classification and identification Academic Press; London:
    [Google Scholar]
  25. Nader de Macias M. E., Perdigon G., Oliver G., Holgado A. E. 1986; Enzyme-linked immunosorbent assay (ELISA) for determining immunological relationships among β-galactosidases from lactobacilli. Syst. Appl. Microbiol 8:28–31
    [Google Scholar]
  26. Nishikimi M., Rao N. A., Yogi K. 1972; The occurrence of superoxide anion in the reduction of reduced phenazine methosulphate and molecular oxygen. Biochem. Biophys. Res. Commun 46:849–854
    [Google Scholar]
  27. Ouchterlony O. 1949; Antigen-antibody reactions in gels. Acta Pathol. Microbiol. Scand 25:186–191
    [Google Scholar]
  28. Pitulle C., Dorsch M., Kazda J., Wolters J., Stackebrandt E. Phylogeny of rapidly growing members of genus Mycobacterium. Int. J. Syst. Bacteriol 42:337–343
    [Google Scholar]
  29. Rado T. A., Bates J. H., Engel H. W. S., Manckicwicz E., Murohashi I., Mizuguchi Y., Sula L. 1975; World Health Organization studies on bacteriophage typing of mycobacteria. Subdivision of species M. tuberculosis.Am. Rev. Respir. Dis 111:459–468
    [Google Scholar]
  30. Rogall T., Wolters J., Flohr T., Böttger E. 1990; Towards a phylogeny and definition of species at the molecular level within the genus Mycobacterium. Int. J. Syst. Bacteriol 40:323–330
    [Google Scholar]
  31. Sauton B. 1912; Sur la nutrition minérale du bacille tuberculeux. C. R. Acad. Sci 155:860
    [Google Scholar]
  32. Schaefer W. B. 1967; Serological classification of atypical mycobacteria and its value in epidemiological studies. Am. Rev. Respir. Dis 96:1165–1168
    [Google Scholar]
  33. Shivannavar C. T. 1993; Studies on the immunological relatedness of superoxide dismutases of mycobacteria. Ph.D. thesis Agra University; Agra, India:
    [Google Scholar]
  34. Shivannavar C. T., Katoch V. M., Sharma V. D., Patil M. A., Katoch K., Bharadwaj V. P., Agrawal B. M. 1996; Development of a superoxide dismutase (SOD) based enzyme linked immunosorbent assay (ELISA) to determine the immunological relatedness among mycobacteria. Int. J. Lepr in press
    [Google Scholar]
  35. Smida J., Kazda J., Stackebrandt E. 1988; Molecular genetic evidence for the relationship of Mycobacterium leprae to slow growing pathogenic mycobacteria. Int. J. Lcpr 56:449–454
    [Google Scholar]
  36. Stahl D. A., Urbance J. W. 1990; The division between fastand slow-growing species corresponds to natural relationships among the mycobacteria. J. Bacteriol 172:116–124
    [Google Scholar]
  37. Stanford J. L., Grange J. M. 1974; The meaning and structure of species as applied to mycobacteria. Tubercle 55:143–152
    [Google Scholar]
  38. Stone B. B., Nietupski R. M., Breton G. L., Weisburg W. G. 1995; Comparison of mycobacterium 23S rRNA sequences by high-temperature reverse transcription and PCR. Int. J. Syst. Bacteriol 45:811–819
    [Google Scholar]
  39. Studier F. W. 1973; Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J. Mol. Biol 79:237–248
    [Google Scholar]
  40. Takewaki S. I., Okuzumi K., Manabe I., Tanimura M., Miyamura K., Nakahara K., Yazaki Y., Ohkubo A., Nagai R. 1994; Nucleotide sequence comparison of mycobacterial dnaJ gene and PCR-restriction fragment length polymorphism analysis for identification of mycobacterial species. Int. J. Syst. Bacteriol 44:159–166
    [Google Scholar]
  41. Takeya K., Tokiwa H. 1972; Mycobacteriocin classification of rapidly growing mycobacteria. Int. J. Syst. Bacteriol 22:178–180
    [Google Scholar]
  42. Thangaraj H. S., Lamb F. I., Davi E. O., Jenner P. J., Jeyerkur L. H., Colston M. J. 1990; Identification, sequencing and expression of Mycobacterium leprae superoxide dismutase, a major antigen. Infect. Immun 58:1937–1942
    [Google Scholar]
  43. Tsukamura M. 1967; Identification of mycobacteria. Tubercle 48:311–338
    [Google Scholar]
  44. Wayne L. G. et al. 1974; Highly reproducible techniques for use in systematic bacteriology in the genus Mycobacterium: tests for pigment, urease, resistance to sodium chloride, hydrolysis of Tween 80, and β-galactosidase. Int. J. Syst. Bacteriol 24:412–419
    [Google Scholar]
  45. Wayne L. G. et al. 1976; Highly reproducible techniques for use in systematic bacteriology in the genus Mycobacterium: tests for niacin and catalase and for resistance to isoniazide, thiophene 2-carboxylic acid hydrazide, hydroxylamine, and p-nitrobenzoate. Int. J. Syst. Bacteriol 26:311–318
    [Google Scholar]
  46. Wayne L. G., Diaz G. A. 1976; Immunoprecipitation studies of mycobacterial catalase. Int. J. Syst. Bacteriol 26:38–44
    [Google Scholar]
  47. Wayne L. G., Diaz G. A. 1979; Reciprocal immunological distances of catalase derived from strains of Mycobacterium avium, Mycobacterium tuberculosis, and closely related species. Int. J. Syst. Bacteriol 29:19–34
    [Google Scholar]
  48. Wheeler P. R., Gregory D. 1980; Superoxide dismutase, peroxidatic activity and catalase in Mycobacterium leprae purified from armadillo liver. J. Gen. Microbiol 121:457–464
    [Google Scholar]
  49. Zhang Y., Lathigra R., Garbe T., Catty D., Young D. 1991; Genetic analysis of superoxide dismutase, the 23-kilodalton antigen of Mycobacterium tuberculosis. Mol. Microbiol 5:381–391
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-4-1164
Loading
/content/journal/ijsem/10.1099/00207713-46-4-1164
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error