sp. nov., a Mesophilic Bacterium Oxidizing Acetate in Syntrophic Association with a Hydrogenotrophic Methanogenic Bacterium Free

Abstract

A syntrophic acetate-oxidizing bacterium, strain BS (T = type strain), was isolated from a previously described mesophilic triculture that was able to syntrophically oxidize acetate and form methane in stoichiometric amounts. Strain BS was isolated with substrates typically utilized by homoacetogenic bacteria. Strain BS was a spore-forming, gram-positive, rod-shaped organism which utilized formate, glucose, ethylene glycol, cysteine, betaine, and pyruvate. Acetate and sometimes formate were the main fermentation products. Small amounts of alanine were also produced from glucose, betaine, and cysteine. Strain BS grew optimally at 37°C and pH 7. The G+C content of the DNA of strain BS was 32 mol%. A 16S rRNA sequence analysis revealed that strain BS was a member of a new species of the genus . We propose the name for this organism; strain BS is the type strain of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-4-1145
1996-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/4/ijs-46-4-1145.html?itemId=/content/journal/ijsem/10.1099/00207713-46-4-1145&mimeType=html&fmt=ahah

References

  1. Andreesen J. R., Bahl H., Gottschalk G. 1989 Introduction to the physiology and biochemistry of the genus Clostridium,. 27–62 Minton N. P., Clarke D. C.ed Clostridia Plenum Press; New York:
    [Google Scholar]
  2. Axelsson L., Lindgren S. 1987; Characterization and DNA homology of Lactobacillus strain isolated from pig intestine. J. Appl. Bacteriol 67:433–440
    [Google Scholar]
  3. Barns S. M., Fundynga R. E., Jeffries M. W., Pace N. R. 1994; Remarkable archae diversity in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA 91:1609–1613
    [Google Scholar]
  4. Blomgren A., Hansen A., Svensson B. H. 1990 Enrichment of a mesophilic, syntrophic bacterial consortium converting acetate to methane at high ammonium concentrations. 225–234 Belaich J. P., Bruschi M., Garcia J.-L.ed Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer Plenum Press; New York:
    [Google Scholar]
  5. Boone D. R., Bryant M. P. 1980; Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov., gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol 40:626–632
    [Google Scholar]
  6. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol 44:992–993
    [Google Scholar]
  7. Collins M. D., Lawson P. A., Willems A., Cordoba J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol 44:812–826
    [Google Scholar]
  8. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  9. Dolfing J. 1988 Acetogenesis. 417–468 Zehnder A. J. B.ed Biology of anaerobic microorganisms John Wiley and Sons; New York:
    [Google Scholar]
  10. Gauglitz U. 1988; Anaerober mikrobieller Abbau von Kreatin, Kreatinin und N-Methylhydantoin. Ph.D. thesis Gottingen University; Gottingen, Germany:
    [Google Scholar]
  11. Harrigan W. F., McCance M. E. 1976 Laboratory methods in food and dairy microbiology Academic Press; New York:
    [Google Scholar]
  12. Hippe H., Andreesen J. R., Gottschalk G. 1992 The genus Clostridium– nonmedical. 1800–1878 Balows A., Trúper H. G., Dworkin M., Harder W., Schleifer K.-H.ed The prokaryotes, 2nd. SpringerVerlag; New York:
    [Google Scholar]
  13. Houwen F. P., Dijkema C., Schoenmakers C. H. H., Stams A. J. M., Zehnder A. J. B. 1987; 13C-NMR study of propionate degradation by a methanogenic coculture. FEMS Microbiol. Lett 41:269–274
    [Google Scholar]
  14. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  16. Kandler O., Stetter K.-O., Köhl R. 1980; Lactobacillus reuteri sp. nov., a new species of homofermentative lactobacilli. Zentralbl. Bakteriol. Micro biol. Hyg. Abt. 1 Orig. C 1:264–269
    [Google Scholar]
  17. Kengen S. W. M., Stams A. J. M. 1994; Formation of l-alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus. Arch. Microbiol 161:168–175
    [Google Scholar]
  18. Kovacs N. 1965; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature (London) 178:703
    [Google Scholar]
  19. Lee M. J., Zinder S. H. 1988; Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl. Environ. Microbiol 54:124–129
    [Google Scholar]
  20. Lee M. J., Zinder S. H. 1988; Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenically and in a syntrophic acetate-oxidizing coculture. Arch. Microbiol 150:513–518
    [Google Scholar]
  21. Ljungdahl L. G. 1986; The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu. Rev. Microbiol 40:415–150
    [Google Scholar]
  22. Ljungdahl L. G., Hugenholtz J., Wiegel J. 1989 Acetogenic and acidproducing clostridia. 145–191 Minton N. P., Clarke D. C.ed Clostridia Plenum Press; New York:
    [Google Scholar]
  23. MacLennan J. D. 1939; The non-saccharolytic plectridial anaerobes. J. Pathol. Bacteriol 49:535–548
    [Google Scholar]
  24. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  25. McInerney M. J., Bryant M., Hespell R. B., Costerton J. W. 1981; Syntrophomonas wolfei gen. nov., sp. nov., an anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Appl. Environ. Microbiol 41:1029–1039
    [Google Scholar]
  26. Niel P., Rimbault A., Campion G., Leluan G. 1989; Phenotypic differentiation between Clostridium hastiforme and Clostridium subterminale by headspace gas chromatography. Int. J. Syst. Bacteriol 39:491–492
    [Google Scholar]
  27. Örlygsson J., Houwen F. P., Svensson B. H. 1994; Anaerobic degradation of protein and the role of methane formation in steady state thermophilic enrichment cultures. Swed. J. Agric. Res 23:45–54
    [Google Scholar]
  28. Petersen S. P., Ahring B. K. 1991; Acetate oxidation in a thermophilic anaerobic sewage-sludge digestor: the importance of non-aceticlastic methanogenesis from acetate. FEMS Microbiol. Ecol 86:149–158
    [Google Scholar]
  29. Peterson G. L. 1983; Determination of total protein. Methods Enzymol 91:91–119
    [Google Scholar]
  30. Pfennig N. 1978; Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped vitamin B12-requiring member of the family Rhodospirillaceae. Int. J. Syst. Bacteriol 28:283–288
    [Google Scholar]
  31. Phelps T. J., Conrad R., Zeikus J. G. 1985; Sulfate-dependent interspecies H2 transfer between Methanosarcina barkeri and Desulfovibrio vulgaris during coculture metabolism on acetate or methanol. Appl. Environ. Microbiol 50:589–594
    [Google Scholar]
  32. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta thermophila: position and implications for the systematics of the order Spirochaetales. Syst. Appl. Microbiol 16:224–226
    [Google Scholar]
  33. Rainey F. A., Stackebrandt E. 1993; 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic clostridia. FEMS Microbiol. Lett 113:125–128
    [Google Scholar]
  34. Rajagopal B. S., Daniels L. 1986; Investigation of mercaptans, organic sulfides, and inorganic sulfur compounds as sulfur sources for the growth of methanogenic bacteria. Curr. Microbiol 14:137–144
    [Google Scholar]
  35. Rimbault A, Niel P., Virelizier H., Darbord J. C., Leluan G. 1988; L-Methionine, a precursor of trace methane in some proteolytic clostridia. Appl. Environ. Microbiol 54:1581–1586
    [Google Scholar]
  36. Rozanova E., Galushko A., Nazina T. 1990 An acetate-decomposing sulphidogenic syntrophic association. 469–470 Belaich J. P., Bruschi M., Garcia J.-L.ed Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer Plenum Press; New York:
    [Google Scholar]
  37. Schildkraut C. L., Lifson S. 1965; Dependence of the melting temperature of DNA on salt concentration. Biopolymers 3:195–208
    [Google Scholar]
  38. Schink B. 1992 Syntrophism among prokaryotes. 276–299 Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K.-H.ed The prokaryotes, 2nd. Springer-Verlag; New York:
    [Google Scholar]
  39. Schink B. 1994 Diversity, ecology, and isolation of acetogenic bacteria. 197–235 Drake H. L.ed Acetogenesis Chapman & Hall; New York:
    [Google Scholar]
  40. Schnürer A., Svensson B. H., Schink B. Unpublished data
  41. Schnürer A, Houwen F. H., Svensson B. H. 1994; Mesophilic syntrophic acetate oxidation during methane formation by a triculture at high ammonium concentration. Arch. Microbiol 162:70–74
    [Google Scholar]
  42. Schnürer A., Zellner G., Svensson B. H. Unpublished data
  43. Schweiger G., Buckel W. 1985; Identification of acrylate, the product of dehydration of (R)-lactate catalysed by cell-free extracts from Clostridium propionicum. FEBS Lett 185:253–256
    [Google Scholar]
  44. Stieb M., Schink B. 1985; Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium. Arch. Microbiol 140:387–390
    [Google Scholar]
  45. Whitmer M. E., Johnsson E. A. 1988; Development of improved defined media for Clostridium botulinum serotypes A, B, and E. Appl. Environ. Microbiol 54:753–759
    [Google Scholar]
  46. Widdel F., Kohring G. W., Mayer F. 1983; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limnicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch. Microbiol 134:286–294
    [Google Scholar]
  47. Widdel F., Pfennig N. 1981; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol 129:395–400
    [Google Scholar]
  48. Zehnder A. J. B., Huser B. A., Brock T. D., Wuhrmann K. 1980; Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch. Microbiol 124:1–11
    [Google Scholar]
  49. Zinder S. H., Koch M. 1984; Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch. Microbiol 138:263–272
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-4-1145
Loading
/content/journal/ijsem/10.1099/00207713-46-4-1145
Loading

Data & Media loading...

Most cited Most Cited RSS feed