DNA Relatedness among Strains Isolated from Natural Mineral Waters and Proposal of sp. nov. Free

Abstract

The taxonomic position of eight strains isolated from mineral water and previously grouped in the authentic pseudomonads on the basis of a phenotypic analysis (cluster Ib of M. Elomari, L. Coroler, D. Izard, and H. Leclerc [J. Appl. Bacteriol. 78:71-81, 1995]) has been further studied by DNA-DNA hybridizations. Using the S1 nuclease method at 60°C and labeled reference DNA from a representative strain, CFML 92-134, we showed that members of cluster Ib constituted a homogeneous group with a relative binding ratio of greater than 80% and changes in melting temperature of less than 1°C. With a total of 67 strains representing known or partially characterized species of the genus , only 4 to 47% DNA hybridization and changes in melting temperature of between 8 and 20°C were found, the highest hybridization values being measured with members of the saprophytic fluorescent pseudomonads. Since cluster Ib could also be clearly differentiated from members of the latter group and from other phenotypic clusters containing isolates from mineral water, we designated the Ib strains members of a new species for which the name sp. nov. has been proposed. Members of this species grew on α-aminobutyrate, sucrose, butyrate, isobutyrate, erythritol, -tryptophan, and trigonelline as sole sources of carbon and energy. The average G+C content of the DNA of the eight strains of was 61.5 ± 0.5 mol%. The type strain is CFML 92-134 (CIP 104663), with a G+C content of 61 mol%. The clinical significance of is unknown.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-4-1138
1996-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/4/ijs-46-4-1138.html?itemId=/content/journal/ijsem/10.1099/00207713-46-4-1138&mimeType=html&fmt=ahah

References

  1. Aznar R., Alcaide E., Garay E. 1992; Numerical taxonomy of pseudomonads isolated from water, sediment and eels. Syst. Appl. Microbiol 14:235–246
    [Google Scholar]
  2. Barrett E. L., Solanes R. E., Tang J. S., Palleroni N. J. 1986; Pseudomonas fluorescens biovar V: its resolution into distinct component groups and the relationship of these groups to other P. fluorescens biovars, to P. putida, and to psychrotrophic pseudomonads associated with food spoilage. J. Gen. Microbiol 132:2709–2721
    [Google Scholar]
  3. Beji A., Izard D., Gavini F., Leclerc H., Leseine-Delstanche M., Krembel J. 1987; A rapid chemical procedure for isolation and purification of chromosomal DNA from Gram-negative Bacilli. Anal. Biochem 161:18–23
    [Google Scholar]
  4. Bischofberger T. 1983; Oligotrophe Bakterien im natiirlichen mineral Wasser und ihre spezifischen Eigenschaften. Dissertation 7230 Eidgenossische technische Hochschule Ziirich; Zurich, Switzerland:
    [Google Scholar]
  5. Bowman J. P., Sly L. I., Hayward A. C., Spiegel Y., Stackebrandt E. 1993; Telluria mixta (Pseudomonas mixta Bowman, Sly, and Hayward 1988) gen. nov., comb, nov., and Telluria chitinofytica sp. nov., soil-dwelling organisms which actively degrade polysaccharides. Int. J. Syst. Bacteriol 43:120–124
    [Google Scholar]
  6. Buttiaux R., Boudier A. 1960; Comportement des bactéries autotrophes dans les eaux minérales conservées en recipients hermétiquement clos. Ann. Inst. Pasteur Lille 11:43–52
    [Google Scholar]
  7. Champion A. B., Barrett E. L., Palleroni N. J., Soderberg R. L., Kunisawa R., Contopoulou R., Wilson A. C., Doudoroff M. 1980; Evolution in Pseudomonas fluorescens. J. Gen. Microbiol 120:485–511
    [Google Scholar]
  8. Coroler L., Elomari M., Hoste B., Gillis M., Izard D., Leclerc H. Pseudomonas rhodesiae, a new species isolated from natural mineral waters. Syst. Appl. Microbiol in press
    [Google Scholar]
  9. Crosa J. H., Brenner D. J., Falkow S. 1973; Use of a single-strandspecific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homoand heteroduplexes. J. Bacteriol 115:904–911
    [Google Scholar]
  10. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol 101:737–754
    [Google Scholar]
  11. De Ley J. 1992 The Proteobacteria: ribosomal RNA cistron similarities and bacterial taxonomy. 2109–2140 Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes, a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 2nd. 2 Springer-Verlag; New York:
    [Google Scholar]
  12. De Vos P., De Ley J. 1983; Intraand intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol 33:487–509
    [Google Scholar]
  13. De Vos P., Kersters K., Falsen E., Pot B., Gillis M., Segers P., De Ley J. 1985; Comamonas David and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. Int. J. Syst. Bacteriol 35:443–453
    [Google Scholar]
  14. De Vos D., Lim A., De Vos P., Sarniguet A., Kersters K., Cornelis P. 1993; Detection of the outer membrane lipoprotein I and its gene in fluorescent and non-fluorescent pseudomonads: implications for taxonomy and diagnosis. J. Gen. Microbiol 139:2215–2223
    [Google Scholar]
  15. Ducluzeau R. 1976; La signification du nombre et de la nature des microorganismes telluriques presents dans 1’eau minérale à 1’émergence. Ann. 1st. Suer Sanita 12:170–176
    [Google Scholar]
  16. Ducluzeau R., Bochand J. M., Dufresne S. 1976; La microflore autochtone de 1’eau minérale: nature, caractères physiologiques, signification hygiénique. Med. Nutr 12:115–119
    [Google Scholar]
  17. Elomari M., Coroler L., Izard D., Leclerc H. 1995; A numerical taxonomic study of fluorescent Pseudomonas strains isolated from natural mineral waters. J. Appl. Bacteriol 78:71–81
    [Google Scholar]
  18. Gardan L., Bollet C., Abu Ghorrah M., Grimont F., Grimont P. A D. 1992; DNA relatedness among the pathovar strains of Pseudomonas syringae subsp. savastanoi Janse (1982) and proposal of Pseudomonas savastanoi sp. nov. Int. J. Syst. Bacteriol 42:606–612
    [Google Scholar]
  19. Grimont P. A D., Popoff M. Y., Grimont F., Coynauit C., Lemelin M. 1980; Reproductibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr. Microbiol 4:325–330
    [Google Scholar]
  20. Guillot E., Leclerc H. 1993; Bacterial flora in natural mineral waters: characterization by ribosomal ribonucleic acid gene restriction patterns. Syst. Appl. Microbiol 16:483–493
    [Google Scholar]
  21. Guillot E., Leclerc H. 1993; Biological specificity of bottled natural mineral waters: characterization by ribosomal ribonucleic acid gene restriction patterns. J. Appl. Bacteriol 75:292–298
    [Google Scholar]
  22. Hoeniger J. F. M. 1965; Development of flagella by Proteus mirabilis. J. Gen. Microbiol 40:29–33
    [Google Scholar]
  23. Jessen O. 1965 Pseudomonas aeruginosa and other green fluorescent pseudomonads. A taxonomic study. 1–244 Munksgaard; Copenhagen:
    [Google Scholar]
  24. Johnson J. L., Palleroni N. J. 1989; Deoxyribonucleic acid similarities among Pseudomonas species. Int. J. Syst. Bacteriol 39:230–235
    [Google Scholar]
  25. Machtelinckx P. 1975; Etude bactériologique sur les germes totaux et leur évolution dans les eaux minérales naturelies. Centre Beige d’Etude et de Documentation des Eaux. Tribune de I’Eau 384:406–409
    [Google Scholar]
  26. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  27. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  28. Masson A., Michel R. 1978; Bactériologie des eaux minérales: influence du PVC sur la croissance de Pseudomonas aeruginosa et Pseudomonas fluorescens. Ind. Alim. Agric 95:503–507
    [Google Scholar]
  29. Molin G., Ternström A. 1982; Numerical taxonomy of the psychrotrophic pseudomonads. J. Gen. Microbiol 128:1249–1264
    [Google Scholar]
  30. Molin G., Ternstrõm A., Ursing J. 1986; Pseudomonas lundensis, a new bacterial species isolated from meat. Int. J. Syst. Bacteriol 36:339–342
    [Google Scholar]
  31. Oger C., Hernandez J. F., Delattre J. M., Delabroise A. H., Krupsky S. 1987; Etude par épifluorescence de 1’évolution de la microflore totale dans une eau minérale embouteillée. Water Res 21:469–474
    [Google Scholar]
  32. Palleroni N. J. 1984 Genus I. Pseudomonas Migula 1894, 237AL (n.m. cons, opin. 5, jud. comm. 1952, 237). 141–199 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams and Wilkins Co.; Baltimore:
    [Google Scholar]
  33. Palleroni N. J. 1992 Humanand animal-pathogenic pseudomonads. 3086–3103 Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications 3 Springer-Verlag; New York:
    [Google Scholar]
  34. Palleroni N. J. 1992 Introduction to the family Pseudomonadaceae,. 3071–3085 Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications 3 Springer-Verlag; New York:
    [Google Scholar]
  35. Palleroni N. J., Ballard R. W., Ralston R., Doudoroff M. 1972; Deoxyribonucleic acid homologies among some Pseudomonas species. J. Bacteriol 110:1–11
    [Google Scholar]
  36. Palleroni N. J., Bradbury J. F. 1993; Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int. J. Syst. Bacteriol 43:606–609
    [Google Scholar]
  37. Palleroni N. J., Doudoroff M., Stanier R. Y., Solanes R. E., Mandel M. 1970; Taxonomy of the aerobic pseudomonads: the properties of the Pseudomonas stutzeri group. J. Gen. Microbiol 60:215–231
    [Google Scholar]
  38. Palleroni N. J., Kunisawa R., Contopoulou R., Doudoroff M. 1973; Nucleic acid homologies in the genus Pseudomonas. Int. J. Syst. Bacteriol 23:333–339
    [Google Scholar]
  39. Ralston-Barrett E., Palleroni N. J., Doudoroff M. 1976; Phenotypic characterization and deoxyribonucleic acid homologies of the “Pseudomonas alcaligenes” group. Int. J. Syst. Bacteriol 26:421–426
    [Google Scholar]
  40. Reinhold-Hurek B., Hurek T., Gillis M., Hoste B., Vancanneyt M., Kersters K., De Ley J. 1993; Azoarcus gen nov., nitrogen-fixing proteobacteria associated with roots of Kallar Grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. Int. J. Syst. Bacteriol 43:574–584
    [Google Scholar]
  41. Saint-Onge A., Romeyer F., Lebel P., Masson L., Brousseau R. 1992; Specificity of the Pseudomonas PAO1 lipoprotein I gene as a DNA probe and PCR target region within the Pseudomonadaceae. J. Gen. Microbiol 138:733–741
    [Google Scholar]
  42. Schwaller P., Schmidt-Lorenz W. 1980; Flore microbienne de quatre eaux minérales non gazéifiées et mises en bouteilles. I: Dénombrement de colonies, composition grossière de la flore et caractères du groupe des bactéries Gram-pigmentées en jaune. Zentralbl. Bakteriol. Hyg. Abt. 1 Orig. C 1:330–347
    [Google Scholar]
  43. Schwaller P., Schmidt-Lorenz W. 1981; La flore microbienne de quatre eaux minérales non gazéifiées et mises en bouteilles. Deuxième communication: les Pseudomonas et autres bactéries à gram négatif–composition fine de la flore. Zentralbl. Bakteriol. Hyg. Abt. 1 Orig. C 2:179–196
    [Google Scholar]
  44. Segers P., Vancanneyt M., Pot B., Torek U., Hoste B., Dewettinck D., Falsen E., Kersters K., De Vos P. 1994; Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb, nov., respectively. Int. J. Syst. Bacteriol 44:499–510
    [Google Scholar]
  45. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol 44:846–849
    [Google Scholar]
  46. Stackebrandt E., Murray R. G. E., Trüper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.” Int. J. Syst. Bacteriol 38:321–325
    [Google Scholar]
  47. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol 43:159–271
    [Google Scholar]
  48. Tamaoka J., Ha D. M., Komagata K. 1987; Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroniMarcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb, nov., with an emended description of the genus Comamonas. Int. J. Syst. Bacteriol 37:52–59
    [Google Scholar]
  49. Van Der Kooij D. 1990; Growth measurements with Pseudomonas aeruginosa, Aeromonas hydrophila and autochthonous bacteria to determine the biological stability of drinking water. Riv. Itai. Ig5–6375–382
    [Google Scholar]
  50. Willems A., Busse J., Goor M., Pot B., Falsen E., Jantzen E., Hoste B., Gillis M., Kersters K., Auling G., De Ley J. 1989; Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxy do flava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int. J. Syst. Bacteriol 39:319–333
    [Google Scholar]
  51. Willems A., De Vos P., Gillis M., Kersters K. 1992; Towards an improved classification of Pseudomonas sp. Soc. Appl. Bacteriol. Tech. Ser 29:21–43
    [Google Scholar]
  52. Willems A., Falsen E., Pot B., Jantzen E., Hoste B., Vandamme P., Gillis M., Kersters K., De Ley J. 1990; Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, EF group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb, nov., Acidovorax delafieldii comb, nov., and Acidovorax temperans sp. nov. Int. J. Syst. Bacteriol 40:384–398
    [Google Scholar]
  53. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. 1992; Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol 36:1251–1275
    [Google Scholar]
  54. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Nishiuchi Y. 1995; Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb, nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiol. Immunol 39:897–904
    [Google Scholar]
  55. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb, nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb, nov., and two genospecies of the genus Sphingomonas. Microbiol. Immunol 34:99–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-4-1138
Loading
/content/journal/ijsem/10.1099/00207713-46-4-1138
Loading

Data & Media loading...

Most cited Most Cited RSS feed