1887

Abstract

Three strains of an anaerobic thermophilic organoheterotrophic lipolytic alkalitolerant bacterium, gen. nov., sp. nov. (type strain JW/VS-265; DSM 11003), were isolated from alkaline hot springs of Lake Bogoria (Kenya). The cells were nonmotile, non-spore forming, straight or slightly curved rods. At 60°C the pH range for growth determined at 25°C [pH°C] was 7.15 to 9.5, with an optimum between 8.1 and 8.9 (pH60°C of 7.6 and 8.1). At a pH of 8.5 the temperature range for growth was from 52 to 70°C, with an optimum between 60 and 66°C. The shortest doubling time was around 1 h. In pure culture the bacterium grew in a mineral base medium supplemented with yeast extract, tryptone, Casamino Acids, betaine, and crotonate as carbon sources, producing acetate as a major product and constitutively a lipase. During growth in the presence of olive oil, free long-chain fatty acids were accumulated in the medium but the pure culture could not utilize olive oil, triacylglycerols, short- and long-chain fatty acids, and glycerol for growth. In syntrophic coculture ( strain JW/VS-M29) the lipolytic bacteria grew on triacylglycerols and linear saturated and unsaturated fatty acids with 4 to 18 carbon atoms, but glycerol was not utilized. Fatty acids with even numbers of carbon atoms were degraded to acetate and methane, while from odd-numbered fatty acids 1 mol of propionate per mol of fatty acid was additionally formed. 16S rDNA sequence analysis identified and spp. as closest phylogenetic neighbors.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-4-1131
1996-10-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/4/ijs-46-4-1131.html?itemId=/content/journal/ijsem/10.1099/00207713-46-4-1131&mimeType=html&fmt=ahah

References

  1. Angelidaki I., Ahring B. K. 1995; Establishment and characterization of an anaerobic thermophilic (55°C) enrichment culture degrading long-chain fatty acids. Appl. Environ. Microbiol 61:2442–2445
    [Google Scholar]
  2. Beaty P. S., McInerney M. J. 1987; Growth of Syntrophomonas wolfei in pure culture on crotonate. Arch. Microbiol 147:389–393
    [Google Scholar]
  3. Blotevogel K.-H., Fischer U., Mocha M., Jannsen S. 1985; Methanobacterium thermoalcaliphilum spec, nov., a new moderately alkaliphilic and thermophilic autotrophic methanogen. Arch. Microbiol 142:211–217
    [Google Scholar]
  4. Boone D. R., Bryant M. P. 1980; Propionate-degrading bacterium Syntrophobacter wolinii sp. nov., gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol 40:626–632
    [Google Scholar]
  5. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium., proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol 44:812–826
    [Google Scholar]
  6. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  7. Emanuilova E., Kambourova M., Dekovska M., Manolov R. 1993; Thermoalkalophilic lipase-producing Bacillus selected by continuous cultivation. FEMS Microbiol. Lett 108:247–250
    [Google Scholar]
  8. Engle M., Li Y., Woese C., Wiegel J. 1995; Isolation and characterization of a novel alkalitolerant thermophile, Anaerobranca horikoshii gen. nov., sp. nov. Int. J. Syst. Bacteriol 45:454–461
    [Google Scholar]
  9. Engle M., Li Y., Rainey F., DeBlois S., Mai V., Reichert A., Mayer F., Messmer P., Wiegel J. 1996; Thermobrachium celere, gen. nov., sp. nov., a rapidly growing thermophilic, alkalitolerant, and proteolytic obligate anaerobe. Int. J. Syst. Bacteriol 46:1025–1033
    [Google Scholar]
  10. Frasca J. M., Parks V. R. 1965; A routine technique for double-staining ultrathin sections using uranyl and lead salts. J. Cell Biol 25:157–161
    [Google Scholar]
  11. Freier D., Mothershed C. P., Wiegel J. 1988; Characterization of Clostridium thermocellum JW-20. Appl. Environ. Microbiol 54:204–211
    [Google Scholar]
  12. Hazlewood G., Dawson R. M. C. 1979; Characteristics of a lipolytic and fatty acid-requiring Butyrivibrio sp. isolated from the ovine rumen. J. Gen. Microbiol 112:15–27
    [Google Scholar]
  13. Henderson C. 1971; A study of the lipase produced by Anaerovibrio lipolytica, a rumen bacterium. J. Gen. Microbiol 65:81–89
    [Google Scholar]
  14. Henson J. M., Smith P. H. 1985; Isolation of a butyrate-utilizing bacterium in a coculture with Methanobacterium thermoautotrophicum from a thermophilic digester. Appl. Environ. Microbiol 49:1461–1466
    [Google Scholar]
  15. Hobson P. N., Mann S. O. 1961; The isolation of glycerol-fermenting and lipolytic bacteria from the rumen of the sheep. J. Gen. Microbiol 25:227–240
    [Google Scholar]
  16. Horikoshi K. 1990 Microorganisms in alkaline environments Kodansha; Tokyo:
    [Google Scholar]
  17. Jaeger K.-E., Ransac S., Dijkstra B. W., Colson C., Heuvel M. van, Misset O. 1994; Bacterial lipases. FEMS Microbiol. Rev 15:29–63
    [Google Scholar]
  18. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press, Inc.; New York:
    [Google Scholar]
  19. Kouker G., Jaeger K.-E. 1987; Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microbiol 53:211–213
    [Google Scholar]
  20. Li Y., Engle M., Weiss N., Mandelco L., Wiegel J. 1994; Clostridium thermoalcaliphilum sp. nov., an anaerobic and thermotolerant facultative alkaliphile. Int. J. Syst. Bacteriol 44:111–118
    [Google Scholar]
  21. Li Y., Mandelco L., Wiegel J. 1993; Isolation and characterization of a moderately thermophilic anaerobic alkaliphile, Clostridium paradoxum sp. nov. Int. J. Syst. Bacteriol 43:450–460
    [Google Scholar]
  22. Ljungdahl L., Wiegel J. 1987 Anaerobic fermentations. 84–96 Demain A. L., Solomon N. A.ed Manual of industrial microbiology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  23. Lorowitz W. H., Zhao H., Bryant M. P. 1989; Syntrophomonas wolfei subsp. saponavida subsp. nov., a long-chain fatty-acid-degrading, anaerobic, syntrophic bacterium; Syntrophomonas wolfei subsp. wolfei subsp. nov.; and emended descriptions of the genus and species. Int. J. Syst. Bacteriol 39:122–126
    [Google Scholar]
  24. McInerney M. J. 1988 Anaerobic hydrolysis and fermentation of fats and proteins. 373–415 Zehnder A. J. B.ed Biology of anaerobic microorganisms John Wiley & Sons; New York:
    [Google Scholar]
  25. McInerney M. J. 1992 The genus Syntrophomonas and other syntrophic anaerobes. 2048 Balows A., Trúper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, application, 2nd. SpringerVerlag; New York:
    [Google Scholar]
  26. McInerney M. J., Bryant M. P., Hespell R. B., Costerton J. W. 1981; Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol 41:1029–1039
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol 39:159–167
    [Google Scholar]
  28. Mountfort D. O., Brulla W. J., Krumholz L. R., Bryant M. P. 1984; Syntrophus buswellii gen. nov., sp. nov.: a benzoate catabolizer from methanogenic ecosystems. Int. J. Syst. Bacteriol 34:216–217
    [Google Scholar]
  29. Prins R. A., Lankhorst A., van der Meer P., Van Nevel C. J. 1975; Some characteristics of Anaerovibrio lipolytica, a rumen lipolytic organism. Antonie Leeuwenhoek 41:1–11
    [Google Scholar]
  30. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta thermophila: its phylogenetic position and implications for the systematics of the order Spirochaetales. Syst. Appl. Microbiol 15:197–202
    [Google Scholar]
  31. Rainey F. A., Ward N. L., Morgan H. W., Toalster R., Stackebrandt E. 1993; Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification. J. Bacteriol 175:4772–4779
    [Google Scholar]
  32. Rees G. N., Grassia G. S., Sheehy A. J., Dwivedi P. P., Patel B. K. C. 1995; Desulfacinum infemum gen. nov., sp. nov., a thermophilic sulfatereducing bacterium from a petroleum reservoir. Int. J. Syst. Bacteriol 45:85–89
    [Google Scholar]
  33. Roy F., Albagnac G., Samain E. 1985; Influence of calcium addition on growth of highly purified syntrophic cultures degrading long-chain fatty acids. Appl. Environ. Microbiol 49:702–705
    [Google Scholar]
  34. Roy F., Samain E., Dubourguier H. C., Albagnac G. 1986; Syntrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch. Microbiol 145:142–147
    [Google Scholar]
  35. Schink B. 1992 Syntrophism among prokaryotes. 276–299 Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, application, 2nd. Springer-Verlag; New York:
    [Google Scholar]
  36. Sigurgisladottir S., Konradsdottir M., Jonsson A., Kristjansson J., Matthiasson E. 1993; Lipase activity of thermophilic bacteria from Icelandic hot springs. Biotechnol. Lett 15:361–366
    [Google Scholar]
  37. Stieb M., Schink B. 1985; Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a spore forming, obligately syntrophic bacterium. Arch. Microbiol 140:387–390
    [Google Scholar]
  38. Sugihara A., Ueshima M., Shimada Y., Tsunasawa S., Tominaga Y. 1992; Purification and characterization of a novel thermostable lipase from Pseudomonas cepacia. J. Biochem 112:598–603
    [Google Scholar]
  39. Whitman W. B., Shieh J., Sohn S., Caras D. S., Premachandran U. 1986; Isolation and characterization of 22 mesophilic methanococci. Syst. Appl. Microbiol 7:235–240
    [Google Scholar]
  40. Widdel F., Hansen T. A. 1992 The dissimilatory sulfateand sulfurreducing bacteria. 583–624 Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, application, 2nd. Springer-Verlag; New York:
    [Google Scholar]
  41. Wiegel J. 1992 The obligate anaerobic thermophilic bacteria. 105–184 Kristjannson J. K.ed Thermophilic bacteria CRC Press; Boca Raton, Fla:
    [Google Scholar]
  42. Wiegel J., Quandt L. 1982; Determination of the Gram type using the reaction between polymyxin B and lipopolysaccharides of the outer cell wall of whole bacteria. J. Gen. Microbiol 128:2261–2270
    [Google Scholar]
  43. Wu W.-M., Jain M. K., Zeikus J. G. 1994; Anaerobic degradation of normaland branched-chain fatty acids with four or more carbons to methane by a syntrophic methanogenic triculture. Appl. Environ. Microbiol 60:2220–2226
    [Google Scholar]
  44. Zhao H., Yang D., Woese C. R., Bryant M. P. 1990; Assignment of Clostridium bryantii to Syntrophospora bryantii gen. nov., comb. nov. on the basis of a 16S rRNA sequence analysis of its crotonate-grown pure culture. Int. J. Syst. Bacteriol 40:40–44
    [Google Scholar]
  45. Zhao H., Yang D., Woese C. R., Bryant M. P. 1993; Assignment of fatty acid-p-oxidizing syntrophic bacteria to Syntrophomonadaceae fam. nov. on the basis of 16S rRNA sequence analyses. Int. J. Syst. Bacteriol 43:278–286
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-46-4-1131
Loading
/content/journal/ijsem/10.1099/00207713-46-4-1131
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error