1887

Abstract

An acidophilic, disulfide-oxidizing, mesophilic, aerobic bacterium was isolated from wastewater sludge. The new organism is a gram-positive sporulated rod. It can use elemental sulfur and pyrite as sole energy sources and grows on organic substrates such as glutamate and glucose. It also grows on the following organic sulfur substrates: Oxidized and reduced glutathione, cysteine, cystine, and dithio(bis)benzothiazole and clearly shows a preference for disulfide bond-containing substrates. The optimal pH of growth is between 1.5 and 2.5, depending on the substrate used, and the growth temperature range varies from 4 to 40°C, with an optimal value at 35°C. The G+C chromosomal DNA content was measured at 53 ± 1 mol%. Phylogenetic analysis of 16S genes coding for rRNA sequences places the new isolate in the genus . In addition, unique phenotypic and physiologic characteristics and DNA homology values assign the isolate to a new species in the genus. Therefore, this new isolate has been named and has been assigned ATCC number 51911.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-4-1056
1996-10-01
2024-07-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/4/ijs-46-4-1056.html?itemId=/content/journal/ijsem/10.1099/00207713-46-4-1056&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1992 Short protocol in molecular biology: a compendium of methods from current protocols in Molecular Biology. 2.10–2.11 Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y:
    [Google Scholar]
  2. Bhattacharyya S., Chakrabarty B. K., Das A., Kundu P. N., Banerjee P. C. 1991; Acidiphilium symbioticum sp. nov. an acidophilic heterotrophic bacterium from Thiobacillus ferrooxidans cultures isolated from Indian mines. Can. J. Microbiol 37:78–85
    [Google Scholar]
  3. Blais J. F., Tyagi R. D., Auclair J. C. 1992; Bioleaching of metals from sewage sludge by sulfur-oxidizing bacteria. J. Environ. Eng. Div. (ASCE) 118:690–707
    [Google Scholar]
  4. Brierley J. A. 1978; Thermophilic iron-oxidizing bacteria found in copper leaching dumps. Appl. Environ. Microbiol 36:523–525
    [Google Scholar]
  5. Brock T. D., Brock K. M., Belly R. T., Weiss R. L. 1972; Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Microbiol 84:54–68
    [Google Scholar]
  6. Brosius J., Palmer J. L., Kennedy J. P., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75:4801–4805
    [Google Scholar]
  7. Darland G., Brock T. 1971; Bacillus acidocaldarius sp. nov., an acidophilic thermophilic spore-forming bacterium. J. Gen. Microbiol 67:9–15
    [Google Scholar]
  8. Deinhard G., Blanz P., Poralla K., Altan E. 1987; Bacillus acidoterrestris sp. nov., a new thermotolerant acidophile isolated from different soils. Syst. Appl. Microbiol 10:47–53
    [Google Scholar]
  9. Deinhard G., Saar J., Krischke W., Poralla K. 1987; Bacillus cyclopheptanicus sp. nov., a new thermoacidophile containing w-cycloheptane fatty acids. Syst. Appl. Microbiol 10:68–73
    [Google Scholar]
  10. Dorch M., Stackebrandt E. 1992; Some modifications in the procedure of direct sequencing of PCR amplified 16S rDNA. J. Microbiol. Methods 16:271–279
    [Google Scholar]
  11. Dufresne S., Blais J. F., Roy C., Guay R. 1993 Municipal waste water treatment plant sludges: a source of organic carbon-tolerant, sulfur-oxidizing Thiobacillus and Sulfobacillus strains. 267–276 Torma A. E., Apel M. L., Brierley C. L.ed Biohydrometallurgical technologies, vol II. Fossil energy materials; bioremediation, microbial physiology. Proceedings of an International Biohydrometallurgy Symposium, Jackson Hole, Wyo. The Minerals, Metals, and Materials Society, Warrendale, Pa:
    [Google Scholar]
  12. Feig S. 1973; Effects of supplementary aeration on the growth of Thiobacillus thiooxidans in shaken cultures. Can J. Microbiol 19:306–307
    [Google Scholar]
  13. Felsenstein J. 1981; Evolutionary trees for DNA sequences: a maximum likelihood approach. J. Mol. Evol 17:368–376
    [Google Scholar]
  14. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  15. Goebel B. M., Stackebrandt E. 1994; Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl. Environ. Microbiol 60:1614–1621
    [Google Scholar]
  16. Golovacheva R. S., Karavaiko G. I. 1978; A new genus of thermophilic spore-forming bacteria, Sulfobacillus. Microbiology 47:658–665
    [Google Scholar]
  17. Guay R., Silver M. 1975; Thiobacillus acidophilus sp. nov.: isolation and some physiological characteristics. Can. J. Microbiol 21:281–288
    [Google Scholar]
  18. Harrison A. P. Jr. 1981; Acidiphilium cryptum gen. nov., sp. nov., heterotrophic bacterium from acidic mineral environments. Int. J. Syst. Bacteriol 31:327–332
    [Google Scholar]
  19. Karavaiko G. I., Golovacheva R. S., Pivovarova T. A., Tzaplina I. A., Vartanjan N. S. 1988 Thermophilic bacteria of the genus Sulfobacillus. 29–41 BioHydroMetallurgy Proceeding of the International Symposium, Warwich 1987 Technology Letters, Antony Rowe Ltd; Chippenham, Wiltshire, United Kingdom:
    [Google Scholar]
  20. Kimura M. 1980; A simple method for estimating evolutionary rate of base substitutions throught comparative studies of nucleotide sequences. J. Mol. Evol 16:111–120
    [Google Scholar]
  21. Kumar S., Tamura K., Nei M. 1993 MEGA: molecular evolutionary genetics analysis version 1.0 The Pennsylvania State University; University Park:
    [Google Scholar]
  22. Lane D. J., Harrison A. P. Jr., Stahl D., Pace B., Giovannoni S. J., Olsen G. J., Pace N. R. 1992; Evolutionary relationship among sulfur and iron-oxidizing eubacteria. J. Bacteriol 174:269–279
    [Google Scholar]
  23. Lowry O. H., Rosenbrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with Folin phenol reagent. J. Biol. Chern 193:265–275
    [Google Scholar]
  24. Maidak B. L., Larsen N., Olsen G. J., McCaughey M. J., Overbeek R., Macke T. J., Fogel K., Blandy J., Woese C. R. 1994; The ribosomal database project. Nucleic Acids Res 22:3485–3487
    [Google Scholar]
  25. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  26. Marmur J., Doty P. 1961; Thermal renaturation of deoxyribonucleic acids. J. Mol. Biol 3:585–594
    [Google Scholar]
  27. Marsh R. M., Norris P. R. 1983; The isolation of some thermophilic, autotrophic ironand sulphur-oxidizing bacteria. FEMS Microbiol. Lett 17:311–315
    [Google Scholar]
  28. Murray R. G. E., Doetsch R. S., Robinow C. F. 1994 Determinative and cytological light microscopy. 21–41 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.ed Methods for general molecular bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  29. Poralla K. Universität Tübingen; 1996 Personal communication
  30. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  31. Segerer A., Neuner A., Kristjansson J. K., Stetter K. O. 1986; Acidianus infemus gen. nov., sp. nov., and Acidianus brierleyi comb, nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int. J. Syst. Bacteriol 36:559–564
    [Google Scholar]
  32. Silverman M. P., Lundgren D. G. 1959; Studies of the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cell yields. J. Bacteriol 77:642–647
    [Google Scholar]
  33. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol 44:846–849
    [Google Scholar]
  34. Swofford D. L. 1993 PAUP-phylogenetic analysis using parsimony, version 3.1 Illinois Natural History Survey; Champlain, Ill:
    [Google Scholar]
  35. Tourova D. P., Poltoraus A. B., Lebedeva I. A., Tsaplina I. A., Bogdova D. I., Karavaiko G. I. 1994; 16S ribosomal RNA (rDNA) sequence analysis and phylogenetic position of Sulfobacillus thermosulfidooxidans. Syst. Appl. Microbiol 17:509–512
    [Google Scholar]
  36. Tsaplina I. A., Osipov G. A., Bogdanova T. I., Nedorezova T. P., Karavaiko G. I. 1994; Fatty-acid composition of lipids in thermoacidophilic bacteria of the genus Sulfobacillus. Microbiology 63:459–464
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-4-1056
Loading
/content/journal/ijsem/10.1099/00207713-46-4-1056
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error