1887

Abstract

Gram-negative polychlorophenol-degrading bacterial strains KF1 (T = type strain), KF3, and NKF1, which were described previously as strains, were studied by chemotaxonomic, genetic, and physiological methods and by electron microscopy and compared with selected xenobiotic compound-degrading bacteria. These strains contained sphingolipids with d-18:0, d-20:1, and d-21:1 as the main dihydrosphingosines, ubiquinone 10 as the main respiratory quinone, and spermidine as the major polyamine, and the DNA G+C content was 66 mol%. The cellular fatty acids included about 60% octadecenoic acid, 9% 2-hydroxymy-ristic acid, 14% -9-hexadecenoic acid, and 10% hexadecanoic acid. These strains exhibited less than 97% 16S ribosomal DNA sequence similarity to all of the other taxa studied. In the DNA-DNA reassociation studies the highest levels of reassociation between these strains and previously described species were less than 40%. Thin sections of cells of strains KF1, KF3, and NKF1 were examined by electron microscopy, and the results showed that the cells had peculiar concentrically arranged layered membranous blebs that extruded from the outer membrane, especially at the cell division points. On the basis of the results of this study, polychlorophenol-degrading strains KF1, KF3, and NKF1 are considered members of a new species of the genus . The polycyclic aromatic hydrocarbon-degrading organism EPA 505 was closely related to as determined by chemotaxonomic, phylogenetic, and physiological criteria. The xenobiotic compound degraders sp. strain A175 and sp. strain BN6 were identified as members of species of the genus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-4-1042
1996-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/4/ijs-46-4-1042.html?itemId=/content/journal/ijsem/10.1099/00207713-46-4-1042&mimeType=html&fmt=ahah

References

  1. Ashtaputre A. A., Shah A. K. 1995; Studies on a viscous, gel-forming exopolysaccharide from Sphingomonas paucimobilis GS1. Appl. Environ. Microbiol 61:1159–1162
    [Google Scholar]
  2. Asturias J. A., Moore E., Yakimov M. M., Klatte S., Timmis K. N. 1994; Reclassification of the polychlorinated biphenyl-degraders Acinetobacter sp. strain P6 and Corynebacterium sp. strain MB1 as Rhodococcus globerulus. Syst. Appl. Microbiol 17:226–231
    [Google Scholar]
  3. Beveridge T., Harris R. 1984; Septation in Zymomonas mobilis. Can. J. Microbiol 30:1283–1289
    [Google Scholar]
  4. Briglia M., Eggen R., van Elsas D., de Vos W. 1994; Phylogenetic evidence for the transfer of the pentachlorophenol-mineralizing Rhodococcus chlorophenolicus strain PCP-1 to the genus Mycobacterium. Int J. Syst. Bacteriol 44:494–498
    [Google Scholar]
  5. Busse J., Auling G. 1988; Polyamine patterns as a chemotaxonomic marker within the Proteobacteria. Syst. Appl. Microbiol 11:1–8
    [Google Scholar]
  6. Cashion P., Holder-Franklin M. A., McCully J., Holder-Franklin M. A. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem 81:461–466
    [Google Scholar]
  7. Dees S. B., Carlone G. M., Hollis D., Moss W. 1985; Chemical and phenotypic characteristics of Flavobacterium thalpophilum compared with those of other Flavobacterium and Sphingobacterium species. Int. J. Syst. Bacteriol 35:16–22
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem 12:133–142
    [Google Scholar]
  9. Doelie H. W., Preusser H.-J., Rostek H. 1982; Electron microscopic investigations of Zymomonas mobilis cells grown in low and high glucose concentrations. Eur. J. Appl. Microbiol. Biotechnol 16:136–141
    [Google Scholar]
  10. Edgehill R. U., Finn R. K. 1982; Isolation, characterization and growth kinetics of bacteria metabolizing pentachlorophenol. Eur. J. Appl. Microbiol. Biotechnol 16:179–184
    [Google Scholar]
  11. Fuerst J. A., Hawkins J. A., Holmes A., Sly L. I., Moore C. J., Stackebrandt E. 1993; Porphyrobacter neustonensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-synthesizing budding bacterium from freshwater. Int. J. Syst. Bacteriol 43:125–134
    [Google Scholar]
  12. Gibson D. T., Roberts R. L., Wells M. C., Kobal V. M. 1973; Oxidation of biphenyl by a Beijerinckia sp. Biochem. Biophys. Res. Commun 50:211–219
    [Google Scholar]
  13. Haggblom M., Nohynek L., Palleroni N., Kronqvist K., Nurmiaho-Lassila E.-L., Salkinoja-Salonen M., Klatte S., Kroppenstedt R. 1994; Transfer of polychlorophenol-degrading Rhodococcus chlorophenolicus (Apajalahti et al. 1986) to the genus Mycobacterium as Mycobacterium chlorophenolicum comb. nov. Int. J. Syst. Bacteriol 44:485–493
    [Google Scholar]
  14. Haggblom M. M., Vaio R. J. 1995 Bioremediation of chlorophenol wastes. 389–434 Young L., Cerniglia C.ed Microbial transformation and degradation of toxic organic chemicals Wiley-Liss, Inc.; New York:
    [Google Scholar]
  15. Hamana K., Matsuzaki S. 1993; Polyamine distribution patterns serve a phenotypic marker in the chemotaxonomy of the Proteobacteria. Can. J. Microbiol 39:304–310
    [Google Scholar]
  16. Hantula J., Kurki A., Vuoriranta P., Bamford D. 1991; Rapid classification of bacterial strains by SDS-polyacrylamide gel electrophoresis: population dynamics of the dominant dispersed phase bacteria of activated sludge. Appl. Microbiol. Biotechnol 34:551–555
    [Google Scholar]
  17. Harms H., Wilkes H., Wittich R.-M., Fortnagel P. 1995; Metabolism of hydroxybenzofurans, methoxydibenzofurans, acetoxydibenzofurans, and nitrodibenzofurans by Sphingomonas sp. strain HH69. Appl. Environ. Microbiol 61:2499–2505
    [Google Scholar]
  18. Hayward A. C., Sly L. I. 1984; Characterization of a dextranolytic biotype of Flavobacterium multivorum from soil. J. Appl. Bacteriol 57:505–516
    [Google Scholar]
  19. Huss V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol 4:184–192
    [Google Scholar]
  20. Janke K-D. 1992; BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J. Microbiol. Methods 15:61–73
    [Google Scholar]
  21. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  22. Ka J. O., Holben W. E., Tiedje J. M. 1994; Genetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria isolated from 2,4-d-treated field soils. Appl. Environ. Microbiol 60:1106–1115
    [Google Scholar]
  23. Karlson U., Rojo F., van Elsas J. D., Moore E. 1995; Genetic and serological evidence for recognition of four pentachlorophenol-degrading bacterial strains as species of the genus Sphingomonas. Syst. Appl. Microbiol 18:539–548
    [Google Scholar]
  24. Kastner M., Breuer-Jammali M., Mahro B. 1994; Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons (PAH). Appl. Microbiol. Biotechnol 41:267–273
    [Google Scholar]
  25. Kawai F., Yamanaka H. 1986; Biodegradation of polyethylene glycol by symbiotic mixed culture (obligate mutualism). Arch. Microbiol 146:125–129
    [Google Scholar]
  26. Khan A. A., Wang R.-F., Cao W.-W., Franklin W., Cerniglia C. E. 1996; Reclassification of a polycyclic aromatic hydrocarbon-metabolizing bacterium, Beijerinckia sp. strain Bl, as Sphingomonas yanoikuyae by fatty acid analysis, protein pattern analysis, DNA-DNA hybridization, and 16S ribosomal DNA sequencing. Int. J. Syst. Bacteriol 46:466–469
    [Google Scholar]
  27. Lobas D., Nimtz M., Wray V., Schumpe A., Proppe C., Deckwer W.-D. 1994; Structure and physical properties of the extracellular polysaccharide PS-P4 produced by Sphingomonas paucimobilis P4 (DSM 6418). Carbohydr. Res 251:303–313
    [Google Scholar]
  28. Mahaffey W. R., Gibson D. T., Cerniglia C. E. 1988; Bacterial oxidation of chemical carcinogens: formation of polycyclic aromatic acids from benz [a]anthracene. Appl. Environ. Microbiol 54:2415–2423
    [Google Scholar]
  29. Maidak B. L., Larsen N., McCaughey M. J., Overbeck R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res 22:3483–3487
    [Google Scholar]
  30. Martins L. O., Sa-Correia I. 1993; Temperature profiles of gellan gum synthesis and activities of biosynthetic enzymes. Biotechnol. Appl. Biochem 20:385–395
    [Google Scholar]
  31. Moore E. R. B., Wittich R.-M., Fortnagel P., Timmis K. N. 1993; 16S ribosomal RNA gene sequence characterization and phylogenetic analysis of a dibenzo-p-dioxin-degrading isolate within the new genus Sphingomonas. Lett. Appl. Microbiol 17:115–118
    [Google Scholar]
  32. Muller J. G., Chapman P. J., Blattman B. O., Pritchard P. H. 1990; Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl. Environ. Microbiol 56:1079–1086
    [Google Scholar]
  33. Nishiyama M., Senoo K., Matsumoto S. 1993; Establishment of y-l,2,3,4,5,6-hexachlorocyclohexane-assimilating bacterium, Sphingomonas paucimobilis strain SS86, in soil. Soil Biol. Biochem 25:769–774
    [Google Scholar]
  34. Nohynek L., Haggblom M., Palleroni N., Kronqvist K., Nurmiaho-Lassila E.-L., Salkinoja-Salonen M. 1993; Characterization of a Mycobacterium fortuitum strain capable of degrading polychlorinated phenolic compounds. Syst. Appl. Microbiol 16:126–134
    [Google Scholar]
  35. Nohynek L., Suhonen E., Nurmiaho-Lassila E.-L., Hantula J., Salkinoja-Salonen M. 1995; Description of four pentachlorophenol-degrading bacterial strains as Sphingomonas chlorophenolica sp. nov. Syst. Appl. Microbiol 18:527–538
    [Google Scholar]
  36. Nortemann B., Kuhm A. E., Knackmuss H.-J., Stolz A. 1994; Conversion of substituted naphthalenesulfonates by Pseudomonas sp. BN6. Arch. Microbiol 161:320–327
    [Google Scholar]
  37. Pollock T. J. 1993; Gellan-related polysaccharides and the genus Sphingomonas. J. Gen. Microbiol 139:1939–1945
    [Google Scholar]
  38. Puhakka J. A., Herwig R. P., Koro P. M., Wolfe G. V., Ferguson J. F. 1995; Biodegradation of chlorophenols by mixed and pure cultures from a fluidized-bed reactor. Appl. Microbiol. Biotechnol 42:951–957
    [Google Scholar]
  39. Radehaus P. M., Schmidt S. K. 1992; Characterization of a novel Pseudomonas sp. that mineralizes high concentrations of pentachlorophenol. Appl. Environ. Microbiol 58:2879–2885
    [Google Scholar]
  40. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta thermophila, its phylogenetic position and implications for the systematics of the order Spirochaetales. Syst. Appl. Microbiol 16:224–226
    [Google Scholar]
  41. Rainey F. A., Stackebrandt E. 1993; 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic clostridia. FEMS Microbiol. Lett 113:125–128
    [Google Scholar]
  42. Resnick S., Chapman P. 1994; Physiological properties and substrate specificity of a pentachlorophenol-degrading Pseudomonas species. Biodegradation 5:47–54
    [Google Scholar]
  43. Saber D., Crawford R. 1985; Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl. Environ. Microbiol 50:1512–1518
    [Google Scholar]
  44. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  45. Scherer P., Kneifel H. 1983; Distribution of polyamines in methanogenic bacteria. J. Bacteriol 154:1315–1322
    [Google Scholar]
  46. Schmidt S., Wittich R.-M., Erdmann D., Wilkes H., Francke W., Fortnagel P. 1992; Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3. Appl. Environ. Microbiol 58:2744–2750
    [Google Scholar]
  47. Schraa G., Boone M. L., Jetten M. S. M., van Neerven A. R. W., Colberg P. J., Zehnder A. J. B. 1986; Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain A175. Appl. Environ. Microbiol 52:1374–1381
    [Google Scholar]
  48. Segers P., Vancanneyt M., Pot B., Torek U., Hoste B., Dewettinck D., Falsen E., Kersters K., de Vos P. 1994; Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Büsing, Doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb, nov., respectively. Int. J. Syst. Bacteriol 44:499–510
    [Google Scholar]
  49. Shiba T., Simidu U. 1982; Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int. J. Syst. Bacteriol 32:211–217
    [Google Scholar]
  50. Sly L. I. 1985; Emendation of the genus Blastobacter Zavarzin 1961 and description of Blastobacter natatorius sp. nov. Int. J. Syst. Bacteriol 35:40–45
    [Google Scholar]
  51. Sneath P. H. A., Sokal R. R. 1973 Numerical taxonomy: the principles and practice of numerical classification. 394–400 W. H. Freeman; San Francisco:
    [Google Scholar]
  52. Stevnsborg N., Lawford H. G., Martin N., Beveridge T. 1986; Effect of growth temperature on the morphology and performance of Zymomonas mobilis ATCC 29191 in batch and continuous culture. Appl. Microbiol. Biotechnol 25:116–123
    [Google Scholar]
  53. Stringfellow W., Aitken M. 1994; Comparative physiology of phenanthrene degradation by two dissimilar pseudomonads isolated from a creosote-contaminated soil. Can. J. Microbiol 40:432–438
    [Google Scholar]
  54. Tahara Y., Kawazu M. 1994; Isolation of glucuronic acid-containing glycosphingolipids from Zymomonas mobilis. Biosci. Biotechnol. Biochem 58:586–587
    [Google Scholar]
  55. Takeuchi M., Kawai F., Shimada Y., Yokota A. 1993; Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst. Appl. Microbiol 16:227–238
    [Google Scholar]
  56. Takeuchi M., Sakane T., Yanagi M., Yamasato K., Hamana K., Yokota A. 1995; Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov. and Sphingomonas mali sp. nov. Int. J. Syst. Bacteriol 45:334–341
    [Google Scholar]
  57. Takeuchi M., Sawada H., Oyaizu H., Yokota A. 1994; Phylogenetic evidence for Sphingomonas and Rhizomonas as nonphotosynthetic members of the alpha-4 subclass of the Proteobacteria. Int. J. Syst. Bacteriol 44:308–314
    [Google Scholar]
  58. Vaisânen O., Nurmiaho-Lassila E.-L., Marmo S., Salkinoja-Salonen M. 1994; Structure and composition of biological slimes of paper and board machines. Appl. Environ. Microbiol 60:641–653
    [Google Scholar]
  59. van Bruggen A. H. C., Jochimsen K. N., Brown P. R. 1990; Rhizomonas suberifaciens gen. nov., sp. nov., the causal agent of corky root of lettuce. Int. J. Syst. Bacteriol 40:175–188
    [Google Scholar]
  60. Wittich R.-M., Wilkes H., Sinnwell V., Francke W., Fortnagel P. 1992; Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1. App. Environ. Microbiol 58:1005–1010
    [Google Scholar]
  61. Yabuuchi E., Kaneko T., Yano I., Moss C. W., Miyoshi N. 1983; Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb, nov., Sphingobacterium multivorum comb, nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and lib. Int. J. Syst. Bacteriol 33:580–598
    [Google Scholar]
  62. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb, nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb, nov., and two genospecies of the genus Sphingomonas. Microbiol. Immunol 34:99–119
    [Google Scholar]
  63. Yano I., Tomiyasu I., Yabuuchi E. 1982; Long chain base composition of strains of three species of Sphingobacterium gen. nov. FEMS Microbiol. Lett 15:303–307
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-4-1042
Loading
/content/journal/ijsem/10.1099/00207713-46-4-1042
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error