Transfer of (Loginova et al. 1984), (Tenreiro et al. 1995), and (Tenreiro et al. 1995) to gen. nov. as comb. nov., comb. nov., and comb. nov., Respectively, and Emendation of the Genus Free

Abstract

On the basis of phylogenetic, phenotypic, and chemotaxonomic distinctiveness, we formally propose that the species of the genus that have low optimum growth temperatures, , and , should be reclassified in the genus gen. nov. as comb. nov., comb. nov., and comb. nov., respectively. An emended description of the genus is also presented.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-2-604
1996-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/2/ijs-46-2-604.html?itemId=/content/journal/ijsem/10.1099/00207713-46-2-604&mimeType=html&fmt=ahah

References

  1. Bateson M. M., Thibault K. J., Ward D. M. 1990; Comparative analysis of 16S ribosomal RNA sequences of Thermus species. Syst. Appl. Microbiol 13:8–13
    [Google Scholar]
  2. Brock T. D., Edwards M. R. 1970; Fine structure of Thermus aquaticus, an extreme thermophile. J. Bacteriol 104:509–517
    [Google Scholar]
  3. Brock T. D., Freeze H. 1969; Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile. J. Bacteriol 98:289–297
    [Google Scholar]
  4. Donato M. M., Seleiro E. A., da Costa M. S. 1990; Polar lipid and fatty acid composition of strains of the genus Thermus. Syst. Appl. Microbiol 13:234–239
    [Google Scholar]
  5. Donato M. M., Seleiro E. A., da Costa M. S. 1991; Polar lipid and fatty acid composition of strains of Thermus ruber. Syst. Appl. Microbiol 14:235–239
    [Google Scholar]
  6. Embley T. M., Thomas R. H., Williams R. A. D. 1993; Reduced thermophilic bias in the 16S rDNA sequence from Thermus ruber provides further support for a relationship between Thermus and Deinococcus. Syst. Appl. Microbiol 16:25–29
    [Google Scholar]
  7. Ferraz A. S., Carreto L., Tenreiro S., Nobre M. F., da Costa M. S. 1994; Polar lipids and fatty acid composition of Thermus strains from New Zealand. Antonie Leeuwenhoek 66:357–363
    [Google Scholar]
  8. Georganta G., Smith K. E., Williams R. A. D. 1993; DNA:DNA homology and cellular components of Thermus filiformis and other strains of Thermus from New Zealand hot springs. FEMS Microbiol. Lett 107:145–150
    [Google Scholar]
  9. Hensel R., Demharter W., Kandler O., Kroppenstedt R. M., Stackebrandt E. 1986; Chemotaxonomic and molecular-genetic studies of the genus Themus: evidence for a phylogenetic relationship of Thermus aquaticus and Thermus ruber to the genus Deinococcus. Int. J. Syst. Bacteriol 36:444–453
    [Google Scholar]
  10. Hudson J. A., Morgan H. W., Daniel R. M. 1987; Thermus filiformis sp. nov., a filamentous caldoactive bacterium. Int. J. Syst. Bacteriol 37:431–436
    [Google Scholar]
  11. Kristjansson J. K., Hjorleifsdottir S., Marteinsson V. T., Alfredsson G. A. 1994; Thermus scotoductus, sp. nov., a pigment-producing thermophilic bacterium from hot tap water in Iceland and including Thermus sp. X-l. Syst. Appl. Microbiol 17:44–50
    [Google Scholar]
  12. Loginova L. G., Egorova L. A., Golovacheva R. S., Seregina L. M. 1984; Thermus ruber sp. nov., nom. rev. Int. J. Syst. Bacteriol 34:498–499
    [Google Scholar]
  13. Manaia C. M., da Costa M. S. 1991; Characterization of halotolerant Thermus isolates from shallow marine hot springs on S. Miguel, Azores. J. Gen. Microbiol 137:2643–2648
    [Google Scholar]
  14. Manaia C. M., Hoste B., Gutierrez M. C., Gillis M., Ventosa A., Kersters K., da Costa M. S. 1994; Halotolerant Thermus strains from marine and terrestrial hot springs belong to Thermus thermophilus (ex Oshima and Imahori, 1974) nom. rev. emend. Syst. Appl. Microbiol 17:526–532
    [Google Scholar]
  15. Munster M. J., Munster A. P., Woodrow J. R., Sharp R. J. 1986; Isolation and preliminary taxonomic studies of Thermus strains isolated from Yellowstone National Park, USA. J. Gen. Microbiol 132:1677–1683
    [Google Scholar]
  16. Nobre M. F., Carreto L., Tenreiro S., Fernandes O., Sharp R., da Costa M. S. Submitted for publication
  17. Nold S. C., Ward D. M. 1995; Diverse Thermus species inhabit a single hot spring microbial mat. Syst. Appl. Microbiol 18:274–278
    [Google Scholar]
  18. Oshima M., Yamakawa T. 1974; Chemical structure of a novel glycolipid from an extreme thermophile, Flavobacterium thermophilum. Biochemistry 13:1140–1146
    [Google Scholar]
  19. Oshima T., Imahori K. 1974; Description of Thermus thermophilus (Yoshida and Oshima) comb, nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa. Int. J. Syst. Bacteriol 24:102–112
    [Google Scholar]
  20. Pask-Hughes R., Shaw N. 1982; Glycolipids from some extreme thermophilic bacteria belonging to the genus Thermus. J. Bacteriol 149:5458
    [Google Scholar]
  21. Pask-Hughes R. A., Williams R. A. D. 1978; Cell envelope components of strains belonging to the genus Thermus. J. Gen. Microbiol 107:65–72
    [Google Scholar]
  22. Prado A., Costa M. S. da, Madeira V. M. C. 1988; Effect of growth temperature on the lipid composition of two strains of Thermus sp. J. Gen. Microbiol 134:1653–1660
    [Google Scholar]
  23. Ruffett M., Hammond S., Williams R. A. D., Sharp R. J. 1992 A taxonomic study of red pigmented gram negative thermophiles. 74 Geirsdottir A. M., Brown H. P., Skjenstad T.ed Conference and Program Abstracts on Thermophiles: Science and Technology IceTec; Reykjavik, Iceland:
    [Google Scholar]
  24. Saul D. J., Rodrigo A. G., Reeves R. A., Williams L. C., Borges K. M., Morgan H. W., Bergquist P. L. 1993; Phylogeny of twenty Thermus isolates constructed from 16S rRNA gene sequence data. Int. J. Syst. Bacteriol 43:754–760
    [Google Scholar]
  25. Sharp R. J., Williams R. A. D. 1988; Properties of Thermus ruber strains isolated from Icelandic hot springs and DNA-DNA homology of Thermus ruber and Thermus aquaticus. Appl. Environ. Microbiol 54:2049–2053
    [Google Scholar]
  26. Tenreiro S., Nobre M. F., da Costa M. S. 1995; Thermus silvanus sp. nov. and Thermus chliarophilus sp. nov., two new species related to Thermus ruber but with lower growth temperatures. Int. J. Syst. Bacteriol 45:633–639
    [Google Scholar]
  27. Tenreiro S., Nobre M. F., Hoste B., Gillis M., Krisyansson J. K., da Costa M. S. 1995; DNAiDNA hybridization and chemotaxonomic studies of Thermus scotoductus. Res. Microbiol 146:315–324
    [Google Scholar]
  28. Weisburg W. G., Giovannoni S. J., Woese C. R. 1989; The Deinococcus- Thermus phylum and the effect of rRNA composition on phylogenetic tree construction. Syst. Appl. Microbiol 11:128–134
    [Google Scholar]
  29. Williams R. A. D., Smith K. E., Welch S. G., Micallef J., Sharp R. J. 1995; DNA relatedness of Thermus strains, description of Thermus brockianus sp. nov., and proposal to reestablish Thermus thermophilus (Oshima and Imahori). Int. J. Syst. Bacteriol 45:495–499
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-2-604
Loading

Most cited Most Cited RSS feed