1887

Abstract

We determined the 16S rRNA sequences of the type strains of species belonging to the genera and for which no sequence data were available previously. We also determined the 16S rRNA sequence of ACAM 21, a representative strain of a biovar of . The members of the genera , and and the misnamed organism formed a monophyletic group within the gamma subclass of the . The 16S rRNA sequences of the members of this group contained all of the signature features previously identified as characteristic of the group. The frequency of occurrence of these signature features among other members of the gamma subclass has remained stable during the expansion of the database of rRNA sequences. The levels of 16S rRNA sequence similarity between members of the species belonging to the genera , and the misnamed organism ranged from 91.5 to 100%; however, the level of sequence similarity for members of well-resolved monophyletic subgroups which might represent separate genera was 98%. At a sequence similarity level of 98% 10 subgroups were resolved, but these groups could not be differentiated on the basis of chemotaxonomic or phenotypic characteristics. In this paper we propose that members of the genera , and should be placed in a single genus, the genus , and we emend the description of this genus. The resulting new combinations are Akagawa and Yamasato 1989), ( Fendrich 1988), ( Baumann et al. 1983), Baumann et al. 1983), Baumann et al. 1983), Baumann et al. 1983), Quesada et al. 1984), and Valderrama et al. 1991). We transfer the misnamed organism to the genus as comb. nov. ( Robinson and Gibbons 1952). The genus is closely related to the genus . While the genus can be clearly distinguished from the genus , these two taxa share important genotypic, chemotaxonomic, and phenotypic characteristics. We propose that the genus should be transferred to the family and emend the description of the family . The 16S rRNA sequence of ACAM 21 was significantly different from the 16S rRNA sequence of the type strain of (strain ACAM 12) but was nearly identical to the 16S rRNA sequence of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-2-550
1996-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/2/ijs-46-2-550.html?itemId=/content/journal/ijsem/10.1099/00207713-46-2-550&mimeType=html&fmt=ahah

References

  1. Akagawa M., Yamasato K. 1989; Synonymy of Alcaligenes aquamarinus, Alcaligenes faecalis subsp. homari, and Deleya aesta\ Deleya aquamarina comb. nov. as the type species of the genus Deleya. Int. J. Syst. Bacteriol 39:462–466
    [Google Scholar]
  2. Amann R. I., Lin C., Key R., Montgomery L., Stahl D. 1992; Diversity among Fibrobacter isolates: towards a phylogenetic classification. Syst. Appl. Microbiol 15:23–31
    [Google Scholar]
  3. Baumann L., Bowditch R. D., Baumann P. 1983; Description of Deleya gen. nov. created to accommodate the marine species Alcaligenes aestus, A. pacificus, A. cupidus, A. venustus, and Pseudomonas marina. Int. J. St. Bacteriol 33:793–802
    [Google Scholar]
  4. Dobson S. J., Colwell R. R., McMeekin T. A., Franzmann P. D. 1993; Direct sequencing of the polymerase chain reaction-amplified 16S rRNA gene of Flavobacterium gondwanense sp. nov. and Flavobacterium salegens sp. nov., two new species from a hypersaline Antarctic lake. Int. J. Syst. Bacteriol 43:77–83
    [Google Scholar]
  5. Dobson S. J., McMeekin T. A., Franzmann P. D. 1993; Phylogenetic relationships between some members of the genera Deleya, Halomonas, and Halovibrio. Int. J. Syst. Bacteriol 43:665–673
    [Google Scholar]
  6. Felsenstein J. 1989; PHYLIP-phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  7. Fendrich C. 1988; Halovibrio variabilis gen. nov., Pseudomonas halophila sp. nov. and a new halophilic aerobic coccoid eubacterium from Great Salt Lake, Utah, USA. Syst. Appl. Microbiol 11:36–43
    [Google Scholar]
  8. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol 42:166–170
    [Google Scholar]
  9. Franzmann P. D., Burton H. R., McMeekin T. A. 1987; Halomonas subglaciescola, a new species of halotolerant bacteria isolated from Antarctica. Int. J. Syst. Bacteriol 37:27–34
    [Google Scholar]
  10. Franzmann P. D., Tindall B. J. 1990; A chemotaxonomic study of members of the family Halomonadaceae. Syst. Appl. Microbiol 13:142–147
    [Google Scholar]
  11. Franzmann P. D., Wehmeyer U., Stackebrandt E. 1989; Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya, Syst. Appl. Microbiol 11:16–19
    [Google Scholar]
  12. Gauthier G., Gauthier M., Christen R. 1995; Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int. J. Syst. Bacteriol 45:755–761
    [Google Scholar]
  13. James S. R., Dobson S. J., Franzmann P. D., McMeekin T. A. 1990; Halomonas meridiana, a new species of extremely halotolerant bacteria isolated from Antarctic saline lakes. Syst. Appl. Microbiol 13:270–278
    [Google Scholar]
  14. Jantzen E., Bryn K. 1985 Whole-cell and 1 ipopolysaccharide fatty acids and sugars of Gram-negative bacteria. 145–172 Goodfellow M., Minnikin D. E.ed Chemical methods in bacterial systematics Academic Press, Inc.; London:
    [Google Scholar]
  15. Kersters K. 1992 The genus Deleya,. 3189–3197 Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K.-H.ed The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 2nd. 4 Springer-Verlag; New York:
    [Google Scholar]
  16. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clarke W. A.ed 1992 International code of nomenclature of bacteria 1990 revision. American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  17. Larsen H. 1986; Halophilic and halotolerant microorganisms—an overview and historical perspective. FEMS Microbiol. Rev 39:3–7
    [Google Scholar]
  18. Mellado E., Moore E. R. B., Nieto J. J., Ventosa A. 1995; Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marimortui, Volcaniella eurihalina, and Deleya salina and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. Int. J. Syst. Bacteriol 45:712–716
    [Google Scholar]
  19. Miller J. M., Dobson S. J., Franzmann P. D., McMeekin T. A. 1994; Reevaluating the classification of Paracoccus halodenitrificans with sequence comparisons of 16S ribosomal DNA. Int. J. Syst. Bacteriol 44:360–361
    [Google Scholar]
  20. Murray R. G. E., Brenner D. J., Colwell R. R., De Vos P., Goodfellow M., Grimont P. A. D., Pfennig N., Stackebrandt E., Zavarin G. A. 1990; Report of the Ad Hoc Committee on Approaches to Taxonomy within the Proteobacteria. Int. J. Syst. Bacteriol 40:213–215
    [Google Scholar]
  21. Okamoto T., Taguchi H., Nakamura K., Ikenaga H., Kuraishi H., Yamasato K. 1993; Zymobacter palmae gen. nov., sp, nov., a new ethanolfermenting peritrichous bacterium isolated from palm sap. Arch. Microbiol 160:333–337
    [Google Scholar]
  22. Olsen G. J., Larsen N., Woese C. R. 1991; The Ribosomal RNA Database Project. Nucleic Acids Res 19:Suppl.2017–2021
    [Google Scholar]
  23. Quesada E., Valderrama M. J., Bcjar V., Ventosa A., Gutierrez M. C., Ruiz-Berraquero F., Ramos-Cormenzana A. 1990; Volcaniella eurihalina gen. nov., sp. nov., a moderately halophilic nonmotile gram-negative rod. Int. J. Syst. Bacteriol 40:261–267
    [Google Scholar]
  24. Quesada E., Ventosa A., Ruiz-Berraquero F., Ramos-Cormenzana A. 1984; Deleya halophila, a new species of moderately halophilic bacteria. Int. J. Syst. Bacteriol 34:287–292
    [Google Scholar]
  25. Robinson J., Gibbons N. E. 1952; The effects of salts on the growth of Micrococcus halodenitrificans n. sp. Can. J. Bot 30:147–154
    [Google Scholar]
  26. Sakane T., Yokota A. 1994; Chemotaxonomic investigation of heterotrophic, aerobic and microaerophilic spirilla, the genera Aquaspirillum, Magnetospirillum and Oceanospirillum. Syst. Appl. Microbiol 17:128–134
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular cloning: a laboratory manual, 2nd. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, N.Y:
    [Google Scholar]
  28. Stackebrandt E. 1992 Unifying phylogeny and phenotypic diversity. 1947 Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K.-H.ed The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 2nd. 1 Springer-Verlag; New York:
    [Google Scholar]
  29. Swofford D. L. 1990 PAUP: phylogenetic analysis using parsimony, version 3.1 Illinois Natural History Survey; Champaign:
    [Google Scholar]
  30. Urakami T., Araki H., Oyanagi H., Suzuki K.-I., Komagata K. 1990; Paracoccus aminophilus sp. nov. and Paracoccus aminovorans sp. nov., which utilize N,N-dimethylformamide. Int. J. Syst. Bacteriol 40:287–291
    [Google Scholar]
  31. Valderrama M. J., Quesada E., Bejar V., Ventosa A., Gutierrez M. C., Ruiz-Berraquero F., Ramos-Cormenzana A. 1991; Deleya salina sp. nov., a moderately halophilic gram-negative bacterium. Int. J, Syst. Bacteriol 41:377–384
    [Google Scholar]
  32. Ventosa A., Gutierrez M. C., Garcia M. T., Ruiz-Berraquero F. 1989; Classification of “Chromobacterium marismortui” in a new genus, Chromohalobacter gen. nov., as Chromohalobacter marismortui comb, nov., nom. rev. Int. J. Syst. Bacteriol 39:382–386
    [Google Scholar]
  33. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int. J. Syst. Bacteriol 30:485–95
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Triiper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol 37:463–464
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-2-550
Loading
/content/journal/ijsem/10.1099/00207713-46-2-550
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error