1887

Abstract

A new chemoorganotrophic bacterium, strain SYR (T = type strain), was isolated from the digestive tract of the wood-feeding termite . This organism was a slightly curved spore-forming rod-shaped bacterium. It had a gram-positive-type cell wall and was obligately anaerobic. It grew exclusively on a limited range of methylated aromatic compounds including 3,4,5-trimethoxycinnamate (TMC), sinapate (3,5-dimethoxy-4-hydroxycinnamate), 3,4-dimethoxycinnamate, 3,4,5-trimethoxybenzoate, ferulate, syringate (3,5-dimethoxy-4-hydroxybenzoate), and vanillate (4-hydroxy-3-methoxybenzoate) but not on carbohydrates, alcohols, or fatty acids. The isolate required yeast extract for growth. Strain SYR grew optimally between 32 and 35°C and at pH values between 6.7 and 7.2, with NaCl concentrations from 0 to 5 g · liter, on TMC with a doubling time of about 25 h. During growth on TMC in the presence of sulfide or cysteine, dimethyl sulfide and acetate were produced, whereas methanethiol was an intermediary product of metabolism. The ring of the methoxylated aromatic compound was cleaved. The DNA base composition was 57 mol% guanine plus cytosine. Comparative 16S rRNA sequence analysis indicated that strain SYR was distantly related to and . On the basis of its distinct phylogenetic position and physiological properties, strain SYR has been designated a new species of a new genus, gen. nov., sp. nov. (= DSM 10068).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-2-512
1996-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/2/ijs-46-2-512.html?itemId=/content/journal/ijsem/10.1099/00207713-46-2-512&mimeType=html&fmt=ahah

References

  1. Andreesen J. R. 1991 The genus Eubacterium,. 1914–1924 Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K.-H.ed The prokaryotes, 2nd. II Springer-Verlag; New York:
    [Google Scholar]
  2. Bak F., Finster K., RothfuB F. 1992; Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria. Arch. Microbiol 157:529–534
    [Google Scholar]
  3. Bignell D. E. 1984; Direct potentiometric determination of redox potentials of the gut contents in the termites Zootermopsis nevadensis and Cubitermes severus and in three other arthropods. J. Insect Physiol 30:169–174
    [Google Scholar]
  4. Bignell D. E., Anderson J. M. 1980; Determination of pH and oxygen status in the guts of lower and higher termites. J. Insect Physiol 26:183–188
    [Google Scholar]
  5. Brauman A., Garcia J. L. 1991 Isolation of a new 3-hydroxybenzoatefermenting bacterium from hindguts of a soil-feeding termite, Cubitermes speciosus, abstr. 1–12. 192 Abstracts of the 91st General Meeting of American Society for Microbiology 1991 American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  6. Brauman A., Kane M. D., Labat M., Breznak J. A. 1992; Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387
    [Google Scholar]
  7. Breznak J. A., Brune A. 1994; Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol 39:453–487
    [Google Scholar]
  8. Breznak J. A., Switzer J. M. 1986; Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl. Environ. Microbiol 52:623–630
    [Google Scholar]
  9. Breznak J. A., Switzer J. M., Seitz H. J. 1988; Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch. Microbiol 150:282–288
    [Google Scholar]
  10. Brune A., Breznak J. A., Brauman A. 1992 Metabolism of aromatic compounds by wood and soil feeding termites; involvement of the intestinal microflora126Proceedings of the 6th International Symposium on Microbial Ecology
    [Google Scholar]
  11. Brune A., Emerson D., Breznak J. A. 1995; The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl. Environ. Microbiol 61:2681–2687
    [Google Scholar]
  12. Brune A., Miambi E., Breznak J. A. 1995; Roles of oxygen and the intestinal microflora in the metabolism of lignin-derived phenylpropanoids and other monoaromatic compounds by termites. Appl. Environ. Microbiol 61:2688–2695
    [Google Scholar]
  13. Butler J. H., Buckerfield J. C. 1979; Digestion of lignin by termite. Soil Biol. Biochem 11:507–513
    [Google Scholar]
  14. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol 44:812–826
    [Google Scholar]
  15. Cookson L. J. 1987; 14C lignin degradation by three Australian termite species. Wood Sci. Technol 21:11–25
    [Google Scholar]
  16. Cookson L. J. 1988; The site of mechanism of 14C lignin degradation by Nasutitermes exitlosus. J. Insect Physiol 34:409–414
    [Google Scholar]
  17. Diekert G., Wohlfarth G. 1994; Metabolism of homoacetogens. Antonie Leeuwenhoek 66:209–221
    [Google Scholar]
  18. Fardeau M. L., Cayol J. L., Magot M., OHivier B. 1993; H2 oxidation in the presence of thiosulfate by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol. Lett 113:327–332
    [Google Scholar]
  19. Felsentein J. 1993 PHYLIP (phylogenetic interference package) version 3.51c Department of Genetics; University of Washington, Seattle:
    [Google Scholar]
  20. Grasse P. P. 1982 Anatomic, physiologic, reproduction des termites. Termitologia, tome I Masson; Paris:
    [Google Scholar]
  21. Grasse P. P., Noirot C. 1959; Uevolution de la symbiose chez les isopteres. Experientia 15:365–372
    [Google Scholar]
  22. Hethener P., Brauman A., Garcia J.-L. 1992; Clostridium termitidis sp. nov., a cellulolytic bacterium from the gut of the wood-feeding termite, Nasutitermes lujae. Syst. Appl. Microbiol 15:52–58
    [Google Scholar]
  23. Hungate R. E. 1969; A roll-tube method for the cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  24. Imhoff-Stuckle D., Pfennig N. 1983; Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch. Microbiol 136:194–198
    [Google Scholar]
  25. Ioffe B. V., Vitenberg A. G. 1984 Head-space analysis and related methods in gas chromatography John Wiley and Sons, Inc.; New York:
    [Google Scholar]
  26. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press, Inc.; New York:
    [Google Scholar]
  27. Kane M. D., Breznak J. A. 1991; Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch. Microbiol 156:91–98
    [Google Scholar]
  28. Kreft J. U., Schink B. 1993; Demethylation and degradation of phenylmethylethers by the sulfide methylating homoacetogenic bacterium strain TMBS4. Arch. Microbiol 159:308–315
    [Google Scholar]
  29. Kuhnigk T., Borst E. M., Ritter A., Kampfer P., Graf A., Hertel H., Konig H. 1994; Degradation of lignin monomers by the hindgut microflora of xylophagous termites. Syst. Appl. Microbiol 17:76–85
    [Google Scholar]
  30. Kumar S., Tamura K., Nei M. 1993 MEGA: molecular evolutionary genetic analysis, version 1.0 The Pennsylvania State University; University Park:
    [Google Scholar]
  31. Lee K. E., Wood T. G. 1971 Termites and soils Academic Press; New York:
    [Google Scholar]
  32. Liesack W., Bak F., Kreft J. U., Stackebrandt E. 1994; Holophaga foetida gen. nov., sp. nov., a new homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch. Microbiol 162:85–90
    [Google Scholar]
  33. Love C. A., Patel B. K. C., Nichols P. D., Stackebrandt E. 1993; Desulfotomaculum australicum sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst. Appl. Microbiol 16:244–251
    [Google Scholar]
  34. Macy J. M., Snellen J. E., Hungate R. E. 1972; Use of syringe methods for anaerobiosis. Am. J. Clin. Nutr 25:1318–1323
    [Google Scholar]
  35. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The ribosomal database project. Nucleic Acids Res 22:3485–3487
    [Google Scholar]
  36. Meshbah M., Premachandran U., Whitman W. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol 39:159–167
    [Google Scholar]
  37. Mountfort D. O., Grant W. D., Clarke R., Asher R. A. 1988; Eubacterium callanderi sp. nov. that demethoxylates <?-methoxylated aromatic acids to volatile fatty acids. Int. J. Syst. Bacteriol 38:254–258
    [Google Scholar]
  38. Noirot C., Noirot-Timothee C. 1969 The digestive system. 49–88 Krishna K., Weesner M.ed Biology of termites 1 Academic Press; New York:
    [Google Scholar]
  39. Novak J. 1975 Quantitative analysis by gas chromatography Marcel Dekker; New York:
    [Google Scholar]
  40. Odelson D. A., Breznak J. A. 1983; Volatile fatty acid production by the hindgut microbiota of xylophagous termites. AppL Environ. Microbiol 45:1602–1613
    [Google Scholar]
  41. Redburn A. C., Patel B. K. C. 1993; Phylogenetic analysis of Desulfotomaculum thermobenzoicum using polymerase chain reaction-amplified 16S rRNA-specific DNA. FEMS Microbiol, Lett 113:81–86
    [Google Scholar]
  42. Reynolds E. S. 1963; The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol 17:208–212
    [Google Scholar]
  43. Winker S., Woese C. R. 1991; A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst. Appl. Microbiol 13:161–165
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-2-512
Loading
/content/journal/ijsem/10.1099/00207713-46-2-512
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error