1887

Abstract

Partial nucleotide sequences of the genes (DNA gyrase B subunit genes) of 15 strains, including the type and reference strains of genomic species 1 to 12 ( [genomic species 1], [genomic species 2], genomic species 3, [genomic species 4], [genomic species 5], genomic species 6, [genomic species 7], [genomic species 8], genomic species 9, genomic species 10, genomic species 11, and [genomic species 12]), were determined by sequencing the PCR-amplified fragments of . The sequence homology among these strains ranged from 69.6 to 99.7%. A phylogenetic analysis, using the sequences, indicates that genomic species 1, 2, and 3 formed one cluster (87.3 to 90.3% identity), while genomic species 8 and 9 formed another cluster (99.7% identity). These results are consistent with those of DNA-DNA hybridization and of biochemical systematics. On the other hand, the topology of the published phylogenetic tree based on the 16S rRNA sequences of the strains was quite different from that of the -based tree. The numbers of substitution in the 16S rRNA gene sequences were not high enough to construct a reliable phylogenetic tree. The -based analysis indicates that the genus is highly diverse and that a reclassification of this genus would be required.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-2-506
1996-04-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/2/ijs-46-2-506.html?itemId=/content/journal/ijsem/10.1099/00207713-46-2-506&mimeType=html&fmt=ahah

References

  1. Adriaens P., Focht D. D. 1991; Cometabolism of 3,4-dichlorobenzoate by Acinetobacter sp. strain 4-CB1. Appl. Environ. Microbiol 57:173–179
    [Google Scholar]
  2. Bernards A. T., Dijkshoorn L., Van der Toorn J., Bochner B. R., Van Boven C. 1995; Phenotypic characterization of Acinetobacter strains of 13 DNA-DNA hybridization groups by means of the Biolog system. J. Med. Microbiol 42:113–119
    [Google Scholar]
  3. Bifulco J. M., Shirey J. J., Bissonnette G. K. 1989; Detection of Acinetobacter spp. in rural drinking water supplies. Appl. Environ. Microbiol 55:2214–2219
    [Google Scholar]
  4. Bochner B. R. 1989; Sleuthing out bacterial identities. Nature (London) 339:157–158
    [Google Scholar]
  5. Bouvet P. J. M., Grimont P. A. D. 1986; Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemofyticus sp. Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and amended descriptions of Acinetobacter calcoaceticus and Acinetobacter Iwoffii. Int. J. Sy st. Bacteriol 36:228–240
    [Google Scholar]
  6. Bouvet P. J. M., Grimont P. A. D. 1987; Identification and biotyping of clinical isolates of Acinetobacter. Ann. Inst. Pasteur Microbiol 138:569–578
    [Google Scholar]
  7. Bouvet P. J. M., Jeanjean S. 1989; Delineation of new proteolytic genomic species in the genus Acinetobacter, Res. Microbiol 140:291–299
    [Google Scholar]
  8. Bouvet P. J. M., Jeanjean S., Vieu J. F., Dijkshoorn L. 1990; Species, biotype, and bacteriophage type determinations compared with cell envelope protein profiles for typing Acinetobacter strains. J. Clin. Microbiol 28:170–176
    [Google Scholar]
  9. Dams E., Hendriks L., Van der Peer Y., Neefs J.-M., Smits G., Vandenbempt I., De Wachter R. 1988; Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 16:r87–rl73
    [Google Scholar]
  10. Dayhoff M. O., Schwartz R. M., Orcutt B. C. 1978 A model of evolutionary change in proteins. 345–352 Dayhoff M. O.ed Atlas of protein sequence and structure 5suppl. 3 National Biomedical Research Foundation; Washington, D.C:
    [Google Scholar]
  11. Dijkshoorn L., Van Dalen R., Van Ooyen A., Bijl D., Tjernberg I., Michel M. F., Horrevorts A. M. 1993; Endemic Acinetobacter in intensive care units: epidemiology and clinical impact. J. Clin. Pathol 46:533–536
    [Google Scholar]
  12. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol 17:368–376
    [Google Scholar]
  13. Felsenstein J. 1989; PHYLIP–phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  14. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool 20:406–416
    [Google Scholar]
  15. Fox G. E., Stackebrandt E., Hespell R. B., Gibson J., Maniloffi J., Dyer T. A., Wolfe R. S., Balch W. E., Tanner R. S., Magrum L. J, Zabkn L. B, Blakemore R., Gupta R., Bonen L., Lewis B. J., Stahl D. A., Luehrsen K. R., Chen K. N., Woese C. R. 1980; The phylogeny of prokaryotes. Science 209:457–463
    [Google Scholar]
  16. Fox G. E., Wisotzkey J. D., Jurtshuk P. J. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol 42:166–170
    [Google Scholar]
  17. Gemer-Smidt P. 1992; Ribotyping of the Acinetobacter caIcoaceticus-Acinetobacter baumannii complex. J. Clin. Microbiol 30:2680–2685
    [Google Scholar]
  18. Gerner-Smidt P., Tjernberg I. 1992; Acinetobacter in Denmark. IL Molecular studies of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. APMIS 101:826–832
    [Google Scholar]
  19. Goldman S., Shabtai Y., Rubinovitz C., Rosenberg E., Gutnick D. L. 1982; Emulsan in Acinetobacter calcoaceticus RAG-1: distribution of cell-free and cell-associated cross-reacting material. AppL Environ. Microbiol 44:165–170
    [Google Scholar]
  20. Gutell R. R., Weiser B., Woese C. R., Noller H. F. 1985; Comparative anatomy of 16-S-like ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol 32:155–216
    [Google Scholar]
  21. Hansen W., Yourassowsky E. 1991; Cellular fatty acid composition of Acinetobacter strains. Microbios 65:195–203
    [Google Scholar]
  22. Hartstein A. I., Morthland V. H., Rourke J. J., Freeman J., Garber S., Sykes R., Rashad A. L. 1990; Plasmid DNA fingerprinting of Acinetobacter calcoaceticus subspecies anitratus from intubated and mechanically ventilated patients. Infect. Control Hosp. Epidemiol 11:531–538
    [Google Scholar]
  23. Higgins D. G., Bleasby A. J., Fuchs R. 1992; CLUSTAL V: improved software for multiple sequence alignment. Comput. Appl. Biosci 8:189–191
    [Google Scholar]
  24. Hillis D. M., Dixon M. T. 1991; Ribosomal DNA: molecular evolution and phylogenetic inference. Q. Rev. Biol 66:411–453
    [Google Scholar]
  25. Johnson J. L. 1981 Genetic characterization. 450–472 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Philips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  26. Jolly-Guillou M. L., Bergogne-Berezin E., Vieu J. F. 1990; A study of the relationships between antibiotic resistance phenotypes, phage-typing and biotyping of 117 clinical isolates Acinetobacter spp. J. Hosp. Infect 16:4958
    [Google Scholar]
  27. Juni E. 1972; Interspecies transformation of Acinetobacter: genetic evidence for a ubiquitous genus. J. Bacteriol 112:917–931
    [Google Scholar]
  28. Kampfer P., Tjernberg I., Ursing J. 1993; Numerical classification and identification of Acinetobacter genomic species. J. Appl. Bacteriol 75:259–268
    [Google Scholar]
  29. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol 16:111–120
    [Google Scholar]
  30. Kimura M., Ohta T. 1972; On the stochastic model for estimation of mutational distance between homologous proteins. J. Mol. EvoL 2:87–90
    [Google Scholar]
  31. Nishimura Y., Ino T., Iizuka H. 1988; Acinetobacter radioresistens sp. nov. isolated from cotton and soil. Int. J. Syst. Bacteriol 38:209–211
    [Google Scholar]
  32. Olsen G. J., Woese C. R., Overbeek R. 1994; The winds of (evolutionary) change: breathing new life into microbiology, J. Bacteriol 176:1–6
    [Google Scholar]
  33. Picard B., Goullet P. 1990; Epidemiological typing of Acinetobacter strains by esterase electrophoresis. FEMS Microbiol. Lett 60:229–234
    [Google Scholar]
  34. Rainey F. A., Lang E., Stackebrandt E. 1994; The phylogenetic structure of the genus Acinetobacter. FEMS Microbiol. Lett 124:349–353
    [Google Scholar]
  35. Regev R., Dolfin T., Zelig L., Givoni S., Wolach B. 1993; Acinetobacter septicemia: a threat to neonates? Special aspects in a neonatal intensive care unit. Infection 21:394–396
    [Google Scholar]
  36. Reisfeld A., Rosenberg E., Gutnick D. 1972; Microbial degradation of crude oil: factors affecting the dispersion in sea water by mixed and pure cultures. Appl. Microbiol 24:363–368
    [Google Scholar]
  37. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniads T. 1989 Molecular cloning: a laboratory manual, 2nd. Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y:
    [Google Scholar]
  39. Sawula R. V., Crawford I. P. 1972; Mapping of the tryptophan genes of Acinetobacter calcoaceticus by transformation. J. Bacteriol 112:797–805
    [Google Scholar]
  40. Schloesser R. L., Laufkoetter E. A., Lehners T., Mietens C. 1990; An outbreak of Acinetobacter calcoaceticus infection in a neonatal care unit. Infection 18:230–233
    [Google Scholar]
  41. Seifert H., Schulze A., Baginski R., Pulverer G. 1994; Plasmid DNA fingerprinting of Acinetobacter species other than Acinetobacter baumannii. J. Ciin. Microbiol 32:82–86
    [Google Scholar]
  42. Shotts E. J., Albert T. F., Wooley R. E., Brown J. 1990; Microflora associated with the skin of the bowhead whale (Balaena mysticetus). J. Wildl. Dis 26:351–359
    [Google Scholar]
  43. Sokal R. R., Michener C. D. 1958; A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull 28:1409–1438
    [Google Scholar]
  44. Stackebrandt E., Goebel B. 1994; Taxonomic note: a place for DNA- DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol 44:846–849
    [Google Scholar]
  45. Tjernberg I., Ursing J. 1989; Clinical strains of Acinetobacter classified by DNA-DNA hybridization. APMIS 97:595–605
    [Google Scholar]
  46. Towner K. J., Bergogne-Berezin E., Fewson C. A. 1991; Acinetobacter. portrait of a genus. FEMS Symp 57:1–24
    [Google Scholar]
  47. Walters M., Milton D., Larsson L., Ford T. 1994; Airborne environmental endotoxin: a cross-validation of sampling and analysis techniques, Appl. Environ. Microbiol 60:996–1005
    [Google Scholar]
  48. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev 51:221–271
    [Google Scholar]
  49. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl. Environ. Microbiol 61:1104–1109
    [Google Scholar]
  50. Yamamoto S., Harayama S. Unpublished data
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-2-506
Loading
/content/journal/ijsem/10.1099/00207713-46-2-506
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error