1887

Abstract

A new thermophilic, glucose-fermenting, anaerobic isolate, strain IndiB4, was obtained from the nonvolcanically heated waters of an Indian artesian basin bore and was named . The cells of this organism were rod shaped to filamentous and occurred singly, in pairs, or in short chains. Motility and spores were not observed. Electron micrographs of thin sections revealed a typical gram-positive cell wall structure, although the cells stained gram negative. The optimum temperature for growth was 60 to 65°C, the maximum temperature was 75°C, and the minimum temperature was more than 37°C. Growth occurred at pH values between 6.2 and 9.2, and the optimum pH was between 7.5 and 8.1. The generation time of at the optimal temperature and optimal pH was 20 min. The DNA base composition was 25.6 ± 0.3 mol% guanine plus cytosine as determined by thermal denaturation. Strain IndiB4 utilized a wide range of carbohydrates, including starch, amylopectin, sucrose, mannose, lactose, fructose, and cellobiose. Ethanol, acetate, lactate, CO, and H were the end products of glucose fermentation. Growth was inhibited by pencillin, tetracycline, and chloramphenicol, indicating that the organism is a member of the domain . A phylogenetic analysis of the 16S rRNA gene revealed that strain IndiB4 is affiliated with the low-guanine-plus-cytosine-content subgroup of the gram-positive phylum. The type strain of is strain IndiB4 (= ACM 3982).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-2-497
1996-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/2/ijs-46-2-497.html?itemId=/content/journal/ijsem/10.1099/00207713-46-2-497&mimeType=html&fmt=ahah

References

  1. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol 44:812–826
    [Google Scholar]
  2. Daumas S., Cord-Ruwisch R., Garcia J. L. 1985; Desulfotomaculum. geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal groundwater. Antonie Leeuwenhoek 54:165–178
    [Google Scholar]
  3. Denman S., Hampson K., Patel B. K. C. 1991; Isolation of strains of Thermus aquaticus from the Australian Artesian Basin and a simple and rapid procedure for the preparation of their plasmids. FEMS Microbiol. Lett 82:73–78
    [Google Scholar]
  4. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  5. Felsenstein J. 1993 PHYLIP (Phylogenetic inference package), version 3.51c Department of Genetics; University of Washington, Seattle:
    [Google Scholar]
  6. Habermehl M. A. 1980; The Great Artesian Basin, Australia. BMR (Bur. Miner. Resour.) J. Aust. Geol. Geophys 5:9–38
    [Google Scholar]
  7. Johnson J. L., Francis B. L. 1975; Taxonomy of the Clostridia: ribosomal ribonucleic acid homology among the species. J. Gen. Microbiol 88:229–244
    [Google Scholar]
  8. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  9. Lee Y.-E., Jain M. K., Lee C., Lowe S. E., Zeikus J. G. 1993; Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharofyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100–69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurigenes comb, nov., and Thermoanaerobacter thermohydrosulfuricus comb, nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Themoanaerobacter ethanolicus. Int. J. Syst. Bacteriol 43:41–51
    [Google Scholar]
  10. Li Y., Engle M., Weiss N., Mandeko M., WiegeL J. 1994; Clostridium thermoalcaliphilum sp. nov., an anaerobic and thermotolerant facultative alkaliphile. Int. J. Syst. Bacteriol 44:111–118
    [Google Scholar]
  11. Li Y., Mandelco M., Wiegel J. 1993; Isolation and characterization of a moderately thermophilic alkaliphile, Clostridium paradoxum sp. nov. Int. J. Syst. Bacteriol 43:450–460
    [Google Scholar]
  12. Love C. A., Patel B. K. C., Nichols P. D., Stackebrandt E. 1993; Desulfotomaculum australicum, sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst. Appl. Microbiol 16:244–251
    [Google Scholar]
  13. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from bacteria. J. Mol. Biol 3:208–218
    [Google Scholar]
  14. Olsen G. J. 1988; Phylogenetic analysis using ribosomal RNA. Methods Enzymol 164:793–812
    [Google Scholar]
  15. Olsen G. J., Dockins W. S., McFeters G. A., Iverson W. P. 1981; Sulfate-reducing and methanogenic bacteria from deep aquifers in Montana. GeomicrobioL J 2:327–340
    [Google Scholar]
  16. Olsen G. J., Larsen N., Woese C. R. 1991; The Ribosomal RNA Database Project. Nucleic Acids Res 19:2017–2021
    [Google Scholar]
  17. Patel B. K C., Love C. A, Stackebrandt E. 1992; Helix 6 of the 16S rRNA of the bacterium Desulfotomaculum australicum exhibits an unusual structural idiosyncrasy. Nucleic Acids Res 20:5483
    [Google Scholar]
  18. Patel B. K. C., Monk C., Littleworth H., Morgan H. W., Daniel R. M. 1987; Clostridium fervidus sp. nov., a chemoorganotrophic acetogenic thcrmophile. Int. J. Syst. Bacteriol 37:123–126
    [Google Scholar]
  19. Patel B. K C., Morgan H. W., Daniel R. M. 1985; A simple and efficient method for preparing and dispensing anaerobic media. BiotechnoL Lett 7:277–288
    [Google Scholar]
  20. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol 141:63–69
    [Google Scholar]
  21. Rainey F. A., Ward N. L., Morgan H. W., Toalster R., Stackebrandt E. 1993; Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification. J. Bacteriol 175:4772–4779
    [Google Scholar]
  22. Redburn A. C., Patel B. K. C. 1993; Phylogenetic analysis of Desulfotomaculum themiobenzoicum using polymerase chain reaction-amplified 16S rRNA-specific DNA. FEMS Microbiol. Lett 113:81–86
    [Google Scholar]
  23. Sharp R. J., Riley P. W., White D. 1992 Heterotrophic thermophilic bacilli. 19–50 Kristjansson J. K.ed Thermophilic bacteria CRC Press; Boca Raton, Fla:
    [Google Scholar]
  24. Thomas J., Gonzalves E. A. 1965; Thermal algae of western India. Hydrobiologia 26:21–65
    [Google Scholar]
  25. Van de Peer Y., De Wachter R. 1992; TREECON: a software package for the construction and drawing of evolutionary trees. Comput. Appl. Biosci 9:177–182
    [Google Scholar]
  26. Winker S., Woese C. R. 1991; A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst. Appl. Microbiol 14:305–310
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-2-497
Loading
/content/journal/ijsem/10.1099/00207713-46-2-497
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error