1887

Abstract

Five strains isolated from Death Valley soil were shown to belong to a previously unidentified species, for which we propose the name . The type strain is strain DV1-F-3 (= NRRL B-14890). On the basis of previously published restriction digestion data, is most closely related to . At this time can be distinguished from only by differences in whole-cell fatty acid compositions. DNA sequences, and levels of reassociation of genomic DNA.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-2-470
1996-04-01
2022-11-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/2/ijs-46-2-470.html?itemId=/content/journal/ijsem/10.1099/00207713-46-2-470&mimeType=html&fmt=ahah

References

  1. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett. Appl. Microbiol 13:202–206
    [Google Scholar]
  2. Claus D., Berkeley R. C. W. 1986 Genus Bacillus Cohn 1872. 1105–1139 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 2 Williams & Wilkins; Baltimore:
    [Google Scholar]
  3. Cohan F. M., Roberts M. S., King E. C. 1991; The potential for genetic exchange by transformation within a natural population of Bacillus subtilis. Evolution 45:1393–1421
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem 12:133–142
    [Google Scholar]
  5. Dubnau D., Smith I., Morell P., Marmur J. 1965; Gene conservation in Bacillus species. I. Conserved genetic and nucleic acid base sequence homologies. Proc. Natl. Acad. Sci. USA 54:491–498
    [Google Scholar]
  6. Gordon R. E., Haynes W. C., Pang C. H. 1973 The genus Bacillus. Agriculture Handbook no. 427. U.S. Department of Agriculture; Washington, D.C:
    [Google Scholar]
  7. Harford N., Mergeay M. 1973; Interspecific transformation of rifampicin resistance in the genus Bacillus. Mol. Gen. Genet 120:151–155
    [Google Scholar]
  8. Harris-Warrick R. M., Lederbei J. 1978; Interspecies transformation in Bacillus’, sequence heterology as the major barrier. J. Bacteriol 133:1237–1245
    [Google Scholar]
  9. Logan N. A., Berkeley R. C. W. 1984; Identification of Bacillus strains using the API system. J. Gen. Microbiol 130:1871–1882
    [Google Scholar]
  10. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206
    [Google Scholar]
  11. Nakamura L. K. 1987; Deoxyribonucleic acid relatedness of lactose-positive Bacillus subtilis strains and Bacillus amyloliquefaciens. Int. J. Syst. Bacteriol 37:444–445
    [Google Scholar]
  12. Nakamura L. K. 1989; Taxonomic relationship of black-pigmented Bacillus subtilis strains and a proposal for Bacillus atrophaeus sp. nov. Int. J. Syst. Bacteriol 39:295–300
    [Google Scholar]
  13. Nakamura L. K., Swezey J. 1983; Taxonomy of Bacillus circulans Jordon 1890: base composition and reassociation of deoxyribonucleic acid. Int. J. Syst. Bacteriol 33:46–52
    [Google Scholar]
  14. Roberts M. S., Cohan F. M. 1993; The effect of DNA sequence divergence on sexual isolation in Bacillus. Genetics 134:401–408
    [Google Scholar]
  15. Roberts M. S., Cohan F. M. 1995; Recombination and migration rates in natural populations of Bacillus subtilis and Bacillus mojavensis. Evolution 49:1081–1094
    [Google Scholar]
  16. Roberts M. S., Nakamura L. K., Cohan F. M. 1994; Bacillus mojavensis sp. nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. Int. J. Syst. Bacteriol 44:256–264
    [Google Scholar]
  17. SAS Institute, Inc 1989 SAS/STAT user’s guide, version 6. , 4th. 2 SAS Institute, Inc.; Cary, N.C:
    [Google Scholar]
  18. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids Technical Note 101. Microbial ID, Inc.; Newark, Del:
    [Google Scholar]
  19. te Riele H. P. J., Venema G. 1982; Molecular fate of heterologous bacterial DNA in competent Bacillus subtilis. I. Processing of B. pumilus and B. licheniformis DNA in B. subtilis. Genetics 101:179–188
    [Google Scholar]
  20. Wilson G. A., Young F. E. 1972; Intergenotic transformation of the Bacillus subtilis genospecies. J. Bacteriol 111:705–716
    [Google Scholar]
  21. Zawadzki P., Roberts M. S., Cohan F. M. 1995; The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics 140:917–932
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-2-470
Loading
/content/journal/ijsem/10.1099/00207713-46-2-470
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error