sp. nov., a New Thermophilic Species Isolated from a Thermally Polluted Effluent Free

Abstract

One strain of a thermophilic, slightly halotolerant bacterium was isolated from a thermally polluted industrial runoff near Salisbury, United Kingdom. This organism, strain PRD-1 (T = type strain), for which we propose the name sp. nov., produces short gram-positive rods and coccoid cells and forms pink colonies. The optimum growth temperature is approximately 60°C. Unusual internal branched-chain fatty acids (namely, 12-methylhexadecanoic acid and 14-methyloctadecanoic acid) make up the major acyl chains of the lipids. The results of our 16S rRNA sequence comparisons showed that strain PRD-1 is related to and that these two organisms form a deep evolutionary line of descent within the gram-positive

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-2-460
1996-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/2/ijs-46-2-460.html?itemId=/content/journal/ijsem/10.1099/00207713-46-2-460&mimeType=html&fmt=ahah

References

  1. Brennan P. J. 1988 Mycobacterium and other actinomycetes. 203–298 Ratledge C., Wilkinson S. G.ed Microbial lipids 1 Academic Press; London:
    [Google Scholar]
  2. Castenholz R. W. 1969; Thermophilic blue-green algae and the thermal environment. Bacteriol. Rev 33:476–504
    [Google Scholar]
  3. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol 44:812–826
    [Google Scholar]
  4. Degryse E., Glansdorff N., Pierard A. 1978; A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch, Microbiol 177:189–196
    [Google Scholar]
  5. Demharter W., Hensel R., Smida J., Stackebrandt E. 1989; Sphaerobacter thermophilus gen. nov., sp. nov. A deeply rooting member of the actinomycetes subdivision isolated from thermophilically treated sewage sludge. Syst. Appl. Microbiol 11:261–266
    [Google Scholar]
  6. Deutsche Sammlung von Mikroorganismen und Zellkulturen 1993 DSM catalogue of strains Deutsche Sammlung von Mikroorganismen und Zellkulturen; Braunschweig, Germany:
    [Google Scholar]
  7. Donato M. M., Seleiro E. A., da Costa M. S. 1990; Polar lipid and fatty acid composition of strains of the genus Thermus. Syst. Appl. Microbiol 13:234–239
    [Google Scholar]
  8. Egge H. 1983 Mass spectrometry of ether lipids. 17–47 Mangold H. K., Paltauf F.ed Ether lipids: biochemical and biomedical aspects Academic Press, Inc.; New York:
    [Google Scholar]
  9. Gillis M., De Ley J., de Cleene M. 1970; The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur. J. Biochem 12:143–153
    [Google Scholar]
  10. Gutell R. R., Weiser B., Woese C. R., Noller H. F. 1985; Comparative anatomy of 16S-like ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol 32:155–216
    [Google Scholar]
  11. Hamm G. H., Cameron G. N. 1986; The EMBL data library. Nucleic Acids Res 14:5–9
    [Google Scholar]
  12. Harvey D. J. 1982; Picolinyl esters as derivatives for the structural determination of long chain branched and unsaturated fatty acids. Biomed. Mass Spectrom 9:33–38
    [Google Scholar]
  13. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press, Inc.; New York:
    [Google Scholar]
  14. Karlson U., Dwyer D. F., Hooper S. W., Moore E. R. B., Timmis K. N., Eltis L. D. 1993; Two independently regulated cytochromes p-450 in a Rhodococcus rhodochrous strain that degrades 2-ethoxyphenol and 4-methoxybenzoate. J. Bacteriol 175:1467–1474
    [Google Scholar]
  15. Kroppenstedt R. M. 1985 Fatty acid and menaquinone analysis of actinomycetes and related organisms. 173–200 Goodfellow M., Minnikin D. E.ed Chemical methods in bacterial systematics Academic Press, Inc.; London:
    [Google Scholar]
  16. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int. J. Syst. Bacteriol 38:358–361
    [Google Scholar]
  17. Lane D. J. 1991 16S/23S sequencing. 115–175 Stackebrandt E., Goodfellow M.ed Nucleic acid techniques in bacterial systematics John Wiley & Sons; Chichester, United Kingdom:
    [Google Scholar]
  18. Lee Y.-E., Jain M. K., Lee C., Lowe S. E., Zeikus J. G. 1993; Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanofyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii. Clostridium themosulfurogenes, and Clostridium thermohydrosulfuricum E100–69 as Themoanaerobacter brockii comb, nov., Thermoanaerobacterium thermosulfurigenes comb, nov., and Themoanaerobacter thermohydrosulfuricus comb, nov., respectively; and transfer of Clostridium themohydrosulfuricum 39E to Themoanaerobacter ethanolicus. Int. J. Syst. Bacteriol 43:4151
    [Google Scholar]
  19. Manaia C. M., da Costa M. S. 1991; Characterization of halotolerant Thermus isolates from shallow marine hot springs on S. Miguel, Azores. J. Gen. Microbiol 137:2643–2648
    [Google Scholar]
  20. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  21. Minnikin D. E., Hutchinson L. G., Caldicott A. B. 1980; Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J. Chromatogr 188:221–233
    [Google Scholar]
  22. Mullis K. B., Faloona F. 1987; Specific synthesis of DNA in vitro via a polymerase-catalysed chain reaction. Methods Enzymol 155:335–350
    [Google Scholar]
  23. Neess J. M., Van de Peer Y., De Rij P., Chapelle S., De Wachter R. 1993; Compilation of small ribosomal subunit RNA structures. Nucleic Acids Res 21:3025–3049
    [Google Scholar]
  24. Olsen G. J. 1987; The earliest phylogenetic branchings: comparing rRNA- based evolutionary trees inferred with various techniques. Cold Spring Harbor Symp. Quant. Biol 52:825–838
    [Google Scholar]
  25. Olsen G. J., Larsen N., Woese R. 1991; The Ribosomal Database Project. Nucleic Acids Res 19:2017–2021
    [Google Scholar]
  26. Pond J. L., Langworthy T. A., Holzer G. 1986; Long-chain diols: a new class of membrane lipids from a thermophilic bacterium. Science 231:1134–1136
    [Google Scholar]
  27. Prado A., da Costa M. S., Madeira V. M. C. 1988; Effect of growth temperature on the lipid composition of two strains of Thermus sp. J. Gen. Microbiol 134:1653–1660
    [Google Scholar]
  28. Rainey F. A., Stackebrandt E. 1993; Transfer of the type species of the genus Thermobacteroides to the genus Thermoanaerobacter as Thermoanaerobacter acetoethylicus (Ben-Bassat and Zeikus 1981) comb, nov., description of Coprothermobacter gen. nov., and reclassification of Thermobacteroides proteolyticus as Coprothennobacter proteolyticus (Ollivier et al. 1985) comb, nov. Int. J. Syst. Bacteriol 43:857–859
    [Google Scholar]
  29. Ryhage R., Stenhagen E. 1960; Mass spectrometry in lipid research. J. Lipid Res 1:361–390
    [Google Scholar]
  30. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Ehrlich H. A. 1988; Primer-directed enzymatic amplification of DNA with a thermo-stable DNA polymerase. Science 239:487–491
    [Google Scholar]
  31. Santos M. A., Williams R. A. D., da Costa M. S. 1989; Numerical taxonomy of Thermus isolates from hot springs in Portugal. Syst. Appl. Microbiol 12:310–315
    [Google Scholar]
  32. Schleifer K.-H., Kandler O. 1972; Peptydoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev 36:407–477
    [Google Scholar]
  33. Sharp R. J., Riley P. W., White D. 1992 Heterotrophic thermophilic bacilli. 19–50 Kristjansson J. K.ed Thermophilic bacteria CRC Press, Inc.; London:
    [Google Scholar]
  34. Stackebrandt E., Kroppenstedt R. M., Jahnke K.-D., Kemmerling C., Gurtler H. 1994; Transfer of Streptosporangium viridogriseum (Okuda et al. 1966), Streptosporangium viridogriseum subsp. kofuense (Nonomura and Ohara 1969), and Streptosporangium albidum (Furamai et al. 1968) to Kutzneria gen. nov. as Kutzneria viridogrisea comb, nov., Kutzneria kofuensis comb. nov., and Kutzneria albida comb, nov., respectively, and emendation of the genus Streptosporangium. Int. J. Syst. Bacteriol 44:265–269
    [Google Scholar]
  35. Suzuki K., Collins M. D., Iijima E., Komagata K. 1988; Chemotaxonomic characterization of a radiotolerant bacterium, Arthrobacter radiotolerans: description of Rubrobacter radiotolerans gen. nov., comb. nov. FEMS Microbiol. Lett 52:33–40
    [Google Scholar]
  36. Tindall B. J. 1989; Fully saturated menaquinones in the archaebacterium Pyrobaculum islandicum, FEMS Microbiol. Lett 60:251–254
    [Google Scholar]
  37. Tindall B. J. Personal communication
  38. Vainshtein M., Hippe H., Kroppenstedt R. M. 1992; Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfatereducing bacteria. Syst. Appl. Microbiol 15:554–566
    [Google Scholar]
  39. Van de Peer Y., Van den Broeck I., de Rijk P., de Watcher R. 1994; Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 22:3488–3494
    [Google Scholar]
  40. Wait R., Hudson M. J. 1985; The use of picolinyl esters for the characterization of microbial lipids; application to Campylobacter species. Lett. Appl. Microbiol 1:95–99
    [Google Scholar]
  41. Wiegel J. 1992 The anaerobic thermophilic bacteria. 105–184 Kristjansson J. K.ed Thermophilic bacteria CRC Press, Inc.; London:
    [Google Scholar]
  42. Williams R. A. D., da Costa M. S. 1992 The genus Thermus and related microorganisms. 3745–3753 Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes, 2nd. Springer-Vedag; New York:
    [Google Scholar]
  43. Wilson K. 1987 Preparation of genomic DNA from bacteria. 241–242 Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.ed Current protocols in molecular biology John Wiley & Sons, Inc.; New York:
    [Google Scholar]
  44. Woese C. R., Gutell R., Gupta R., Noller H. F. 1983; Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol. Rev 47:621–669
    [Google Scholar]
  45. Yoshinaka T., Yano K., Yamaguchi H. 1973; Isolation of a highly radioresistant bacterium, Arthrobacter radiotolerans nov. sp. Agric. BioL. Chern 37:2269–2275
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-2-460
Loading
/content/journal/ijsem/10.1099/00207713-46-2-460
Loading

Data & Media loading...

Most cited Most Cited RSS feed