1887

Abstract

Strain 30A (T = type strain), which was isolated from an anaerobic bioreactor fed on waste from a potato starch factory in De Krim, The Netherlands, is a nonmotile, gram-positive, anaerobic, rod-shaped organism that is able to degrade various amino acids, including alanine, leucine, isoleucine, valine, serine, and threonine. Acetate is required as an electron acceptor for the utilization of alanine, valine, leucine, and isoleucine. Other growth substrates, including pyruvate, α-ketobutyrate, α-ketoisocaproate, α-keto-3-methylvalerate, α-ketoisovalerate, and peptone, are intermediates in amino acid catabolism. Strain 30A utilizes neither the branched-chain amino acids nor alanine via interspecies hydrogen transfer with methanogenic and sulfate-reducing bacteria or via the Stickland reaction with proline or glycine as an electron acceptor. No growth occurs with the following electron acceptors: fumarate, nitrate, nitrite, sulfite, sulfate, and oxygen. Yeast extract is required for growth. Sugars are not degraded. The optimal temperature and optimal pH for growth are 39 to 43°C and 6.4 to 7.6, respectively. The results of a 16S rRNA sequence analysis phylogenetically placed strain 30A in group I (genus sensu stricto), where it forms a new and distinct line of descent.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-2-454
1996-04-01
2024-05-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/2/ijs-46-2-454.html?itemId=/content/journal/ijsem/10.1099/00207713-46-2-454&mimeType=html&fmt=ahah

References

  1. Andreesen J. R., Bahl H., Gottschalk G. 1989 Introduction to the physiology and biochemistry of the genus Clostridium,. 27–62 Minton N. P., Clarke D. J.ed Clostridia Plenum Press; New York:
    [Google Scholar]
  2. Barker H. A. 1957 Bacterial fermentations Wiley; New York:
    [Google Scholar]
  3. Barker H. A. 1981; Amino acid degradation by anaerobic bacteria. Annu. Rev. Biochem 40:23–40
    [Google Scholar]
  4. Bentley C. M., Dawes E. A. 1974; The energy-yielding reactions of Peptococcus prevotii, their behaviour on starvation and the role and regulation of threonine dehydratase. Arch. Microbiol 100:363–387
    [Google Scholar]
  5. Bhat J. C., Barker H. A. 1947; Clostridium lactoacetophilum nov. spec, and the role of acetic acid in the butyric acid fermentation of lactate. J. Bacteriol 54:381–391
    [Google Scholar]
  6. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol 44:992–993
    [Google Scholar]
  7. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol 44:812–826
    [Google Scholar]
  8. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of nucleic acids. J. Bacteriol 101:738–754
    [Google Scholar]
  9. Elsden S. R., Hilton M. G. 1978; Volatile acid production from threonine, valine, leucine and isoleucine by Clostridia. Arch. Microbiol 117:165–172
    [Google Scholar]
  10. Elsden S. R., Hilton M. G. 1979; Amino acid utilization patterns in clostridial taxonomy. Arch. Microbiol 123:137–141
    [Google Scholar]
  11. Felsenstein J. 1989; PHYLIP–phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  12. Genthner B. R. S., Davis C. L., Bryant M. P. 1981; Features of rumen and sewage sludge strains of Eubactenum limosum, a methanoland H2- CO2-utilizing species. Appl. Environ. Microbiol 42:12–19
    [Google Scholar]
  13. Gerritse J., Schut F., Gottschal J. C. 1990; Mixed chemostat cultures of obligatory aerobic and fermentative or methanogenic bacteria under oxygenlimiting conditions. FEMS Microbiol. Lett 66:87–94
    [Google Scholar]
  14. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur. J. Appl. Microbiol. BiotechnoL 5:123–127
    [Google Scholar]
  15. Guangsheng C., Plugge C. M., Roelofsen W., Houwen F. P., Stams A. J. M. 1991; Selenomonas acidaminovorans sp. nov., a versatile thermophilic proton-reducing anaerobe with the ability to grow by decarboxylation of succinate to propionate. Arch. Microbiol 157:169–175
    [Google Scholar]
  16. Heyndrick H., De Vos P., Speybrouck A., De Ley J. 1989; Fermentation of mannitol by Clostridium butyricum; role of acetate as an external hydrogen acceptor. Appl. Microbiol. BiotechnoL 31:323–328
    [Google Scholar]
  17. Hippe H., Andreesen J. R., Gottschalk G. 1992 The genus Clostridium一nonmedical. 1800–1866 Balows A., Triiper H. G, Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes 2 SpringerVerlag; New York:
    [Google Scholar]
  18. Hutson R. A., Thompson D. E., Collins M. D. 1993; Genetic interrelationships of saccharolytic Clostridium botulinum types B, E and F and related Clostridia as revealed by small subunit rRNA sequences. FEMS Microbiol. Lett 108:103–110
    [Google Scholar]
  19. Kenealy W. R., Waselefsky D. M. 1985; Studies on the substrate range of Clostridium kluyveri\ the use of propanol and succinate. Arch. Microbiol 141:187–194
    [Google Scholar]
  20. Kutzner H. J. 1963; Untersuchungen an Clostridien mit besonderer Berucksichtigung der fiir die Milchwirtschaft wichtigen Arten. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig 191:441–450
    [Google Scholar]
  21. Laanbroek H. J., Geerligs H. J., Sijtsma L., Veldkamp H. 1984; Competition for sulfate and ethanol among Desulfobacter, Desulfobulbus, and Desulfovibrio species isolated from intertidal sediments. AppL Environ. Microbiol 47:329–334
    [Google Scholar]
  22. Laanbroek H. J., Lambers J. T., De Vos W. M., Veldkamp H. 1978; L-Aspartate fermentation by a free-living Campylobacter species. Arch. Microbiol 117:109–114
    [Google Scholar]
  23. Lang E., Lang H. 1972; Spezifische Farbreaction zum direkten Nachweis der Ameisensaure. Zeitung Anal. Chem 260:8–10
    [Google Scholar]
  24. Lawson P. A., Gharbia S. E., Shah H. N., Clark D. R. 1989; Recognition of Fusobacterium nudeatum subgroups FN-1, FN-2 and FN-3 by ribosomal RNA gene restriction patterns. FEMS Microbiol. Lett 65:41–46
    [Google Scholar]
  25. Loubiere P., Lindley N. D. 1991; The use of acetate as an additional cosubstrate improves methylotrophic growth of the acetogenic anaerobe Eubacterium limosum when CO2 fixation is rate limiting. J. Gen. Microbiol 137:2247–2251
    [Google Scholar]
  26. Marmur J., Doty P. 1962; Determination of the base composition of DNA from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  27. McInerney M. J. 1988 Anaerobic hydrolysis and fermentation of fats and proteins. 373–415 Zehnder A. J. B.ed Biology of anaerobic microorganisms John Wiley and Sons; New York:
    [Google Scholar]
  28. Mead G. C. 1971; The amino acid-fermenting Clostridia. J. Gen. Microbiol 67:47–56
    [Google Scholar]
  29. Mopper K., Dawson R. 1986; Determination of amino acids in seawater. Recent chromatographic developments and future directions. Sci. Total Environ 449:115–131
    [Google Scholar]
  30. Nagase M., Matuso T. 1982; Interaction between amino-acid-degrading bacteria and methanogenic bacteria in anaerobic digestion. BiotechnoL Bioeng 24:2227–2239
    [Google Scholar]
  31. Nanninga H. J., Drent W. J., Gottschal J. C. 1986; Major differences between glutamate-fermenting species isolated from chemostat enrichments at different dilution rates. FEMS Microbiol. Ecol 38:321–329
    [Google Scholar]
  32. Nanninga H. J., Drent W. J., Gottschal J. C. 1987; Fermentation of glutamate by Selenomonas acidaminophila sp. nov. Arch. Microbiol 147:152–157
    [Google Scholar]
  33. Nanninga H. J., Gottschal J. C. 1985; Amino acid fermentation and hydrogen transfer in mixed cultures. FEMS Microbiol. Ecol 31:261–269
    [Google Scholar]
  34. Orlygsson J., Houwen F. P., Svensson B. H. 1993; Anaerobic degradation of protein and the role of methane formation in steady state thermophilic enrichment cultures. Swed. J. Agric. Ser 23:45–54
    [Google Scholar]
  35. Orlygsson J., Houwen F. P., Svensson B. H. 1994; Influence of hydrogenotrophic methane formation on the thermophilic anaerobic degradation of protein and amino acids. FEMS Microbiol. Ecol 13:327–334
    [Google Scholar]
  36. Pfenning N. 1978; Rhodocyclus purpureus gen. nov. and sp. nov., a ringshaped, vitamin B12-requiring member of the family RhodospMlaceae. Int. J. Syst. Bacteriol 28:283–288
    [Google Scholar]
  37. Richterich R. 1965 Klinische Chemie Akademische Verlaggesellschaft; Frankfurt:
    [Google Scholar]
  38. Smith L. D. S. 1992 The genus Clostridium–medical. 1867–1878 Balows A., Triiper H. G., Dworkin M., Harder W., Schleifer K. H.ed The prokaryotes 2 Springer-Verlag; New York:
    [Google Scholar]
  39. Stams A. J. M., Hansen T. A. 1984; Fermentation of glutamate and other compounds by Acidaminobacter hydrogenoformans gen. nov., sp. nov., an obligate anaerobe isolated from black mud. Studies with pure cultures and mixed cultures with sulfate reducing and methanogenic bacteria. Arch. Microbiol 137:329–337
    [Google Scholar]
  40. Thauer R. K., Jungermann K., Decker K. 1977; Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev 41:100–180
    [Google Scholar]
  41. Wallace R. J. 1986; Catabolism of amino acids by Megasphaera elsdenii LC1. Appl. Environ. Microbiol 51:1141–1143
    [Google Scholar]
  42. Whiteley H. R. 1957; Fermentation of amino acids by Micrococcus aerogenes. J. Bacteriol 74:324–330
    [Google Scholar]
  43. Wildenauer F. X., Winter J. 1986; Fermentation of isoleucine and arginine by pure and syntrophic cultures of Clostridium sporogenes. FEMS Microbiol. Ecol 38:373–379
    [Google Scholar]
  44. Winter J., Schindler F., Wildenauer F. X. 1987; Fermentation of alanine and glycine by pure and syntrophic cultures of Clostridium sporogenes. FEMS Microbial Ecol 45:153–161
    [Google Scholar]
  45. Zindel U., Freudenberg W., Reith M., Andreesen J. R., Schnell J., Widdel F. 1988; Eubacterium acidaminophilum sp. nov., a versatile amino aciddegrading anaerobe producing or utilizing H2 or formate. Arch. Microbiol 150:254–266
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-2-454
Loading
/content/journal/ijsem/10.1099/00207713-46-2-454
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error