1887

Abstract

Strain DCB-2 (T = type strain) (T. Madsen and D. Licht, Appl. Environ. Microbiol. 58:2874–2878, 1992) is an anaerobic, spore-forming bacterium that is capable of reductive dechlorination of chlorophenols. The cells of this strain are rod shaped and 3.3 to 6 μm long by 0.6 to 0.7 μm wide and occur singly and in pairs. Short chains are formed. Spores are terminal. This bacterium is motile, and each cell has one or two terminal flagella. Cells in the exponential and stationary phases are gram negative. This organism does not hydrolyze gelatin and is indole positive and catalase negative, and the guanine-plus-cytosine content of its cellular DNA is 47 mol%. The optimum temperature for growth is 37°C. Only pyruvate and tryptophan are used as substrates. Pyruvate and 2,4,6-trichlorophenol are converted to acetate, CO, and 4-chlorophenol by strain DCB-2. When grown on pyruvate, this bacterium produces sulfide if thiosulfate or sulfite is added as an electron acceptor. Fe(III) is reduced to Fe(II), but Mn(IV) is not reduced. Sulfate is not reduced to sulfide in the presence of pyruvate or other carbon sources typically used by sulfate-reducing bacteria. Cytochrome is present, but desulfoviridin is not. DCB-2 reductively dechlorinates 3-chloro-4-hydroxyphenylacetate to 4-hydroxyphenylacetate and conserves energy from the reaction. 16S rRNA sequencing revealed that strain DCB-2 clusters with the subphylum and groups with and does not dechlorinate 2,4,6-trichlorophenol. On the basis of the phylogenetic and physiological differences and similarities of strain DCB-2, , and , we concluded that DCB-2 belongs to the genus . We propose that strain DCB-2 is the type strain of sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-2-442
1996-04-01
2022-09-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/2/ijs-46-2-442.html?itemId=/content/journal/ijsem/10.1099/00207713-46-2-442&mimeType=html&fmt=ahah

References

  1. Adams M. E., Postgate J. R. 1959; A new sulphate-reducing vibrio. J. Gen. Microbiol 20:252–257
    [Google Scholar]
  2. Ahring B. K., Christiansen N., Mathrani I., Hendriksen H. V., Macario A. J. L., Conway de Macario E. 1992; Introduction of a de novo bioremediation ability, aryl reductive dechlorination, into anaerobic granular sludge by inoculation of sludge with Desulfomonile tiedjei. Appl. Environ, Microbiol 58:3677–3682
    [Google Scholar]
  3. Albrechtsen H. J., Heron G., Christensen T. H. 1995; Limiting factors for microbial Fe(III)-Teduction in a landfill leachate polluted aquifer (Vejen, Denmark), FEMS Microbiol. EcoL 16:233–248
    [Google Scholar]
  4. American Public Health Association 1992 Standard methods for the examination of water and wastewater. , 18th. American Public Health Association; Washington, D.C:
    [Google Scholar]
  5. Angelidaki I., Petersen S. P., Ahring B. K. 1990; Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite. Appl. Microbiol. BiotechnoL 33:469–472
    [Google Scholar]
  6. Apajalathi J. H. A., Salkinoja-Salonen M. S. 1987; Complete dechlorination of tetrachlorohydroquinone by cell extracts of pentachlorophenolinduced Rhodococcus chlorophenolicus. J. Bacteriol 169:5125–5130
    [Google Scholar]
  7. Bryant F. O., Hale D. D., Rogers J. E. 1991; Regiospecific dechlorination of pentachlorophenol by dichlorophenol-adapted microorganisms in freshwater, anaerobic sediment slurries. Appl. Environ. Microbiol 57:2293–2301
    [Google Scholar]
  8. Campbell L. L., Postgate J. R. 1965; Classification of the spore-forming sulfate-reducing bacteria. Bacteriol. Rev 29:359–363
    [Google Scholar]
  9. Campbell L. L., Singleton R. Jr. 1986 Genus IV. Desulfotomaculum,. 1200–1202 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.ed Bergey’s manual of systematic bacteriology 2 Williams & Wilkins; Baltimore:
    [Google Scholar]
  10. Cline J. D. 1969; Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr 14:454–458
    [Google Scholar]
  11. Cole J. R., Cascarelli A. L., Mohn W. W., Tiedje J. M. 1994; Isolation and characterization of a novel bacterium growing via reductive dehalogenation of 2-chlorophenol. Appl. Environ. Microbiol 60:3536–3542
    [Google Scholar]
  12. DeSoete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  13. Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH 1989 Catalogue of strains. , 4th. Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; Braunschweig, Germany:
    [Google Scholar]
  14. DeWeerd K. A., Mandelco L., Tanner R. S., Woese C. R., Suflita J. M. 1990; Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch. Microbiol 154:23–30
    [Google Scholar]
  15. DeWeerd K. A., Suflita J. M., Linkfield T., Tiedje J. M., Pritchard P. H. 1986; The relationship between reductive dehalogenation and other aryl substituent removal reactions catalyzed by anaerobes. FEMS Microbiol. EcoL 38:331–339
    [Google Scholar]
  16. Fathepure B. Z., Tiedje J. M., Boyd S. A. 1988; Reductive dechlorination of hexachlorobenzene to triand dichlorobenzenes in anaerobic sewage sludge. Appl. Environ. Microbiol 54:327–330
    [Google Scholar]
  17. Genthner B. R. S, Price W. A. II, Pritchard P. H. 1989; Anaerobic degradation of chloroaromatic compounds in aquatic sediments under variety of enrichment conditions. Appl. Environ. Microbiol 55:1466–1471
    [Google Scholar]
  18. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed 1981 Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  19. Haggblom M. M., Janke D., Salkinoja-Salonen M. S. 1989; Hydroxylation and dechlorination of tetrachlorohydroquinone by Rhodococcus sp. strain CP-2 cell extracts. Appl. Environ. Microbiol 55:516–519
    [Google Scholar]
  20. Hale D. D., Rogers J. E., WiegeL J. 1990; Reductive dechlorination of dichlorophenols by nonadapted and adapted microbial communities in pond sediments. Microb. Ecol 20:185–196
    [Google Scholar]
  21. Hendriksen H. V., Larsen S., Ahring B. K. 1992; Influence of a supplemental carbon source on anaerobic dechlorination of pentachlorophenol in granular sludge. Appl. Environ, Microbiol 58:365–370
    [Google Scholar]
  22. Holliger C. 1992; Reductive dehalogenation by anaerobic bacteria. Ph.D. thesis Wageningen Agricultural University; Wageningen, The Netherlands:
    [Google Scholar]
  23. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  24. Klemps R., Cypionka H., Widdel F., Pfennig N. 1985; Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species. Arch. Microbiol 143:203–208
    [Google Scholar]
  25. Kohring G.-W., Rogers J. E., Wiegel J. 1989; Anaerobic biodegradation of 2,4-dichlorophenoI in freshwater lake sediments at different temperatures. AppL Environ. Microbiol 55:348–353
    [Google Scholar]
  26. Kuhn E. P., Suflita J. M. 1989 Dehalogenation of pesticides by anaerobic microorganisms in soils and groundwater–a review. 111–180 Sawney B. L., Brown K.ed Reactions and movement of organic chemicals in soils Soil Science Society of America and American Society of Agronomy; Madison, Wis:
    [Google Scholar]
  27. Larsen S., Hendriksen H. V., Ahring B. K. 1991; Potential for thermophilic (50°C) anaerobic dechlorination of pentachlorophenol in different ecosystems. Appl. Environ. Microbiol 57:2085–2090
    [Google Scholar]
  28. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. J. Biol. Chem 193:265–275
    [Google Scholar]
  29. Macario A. J. L., Conway de Macario E. 1983; Antigenic fingerprinting of methanogenic bacteria with polyclonal antibody probes. Syst. AppL Microbiol 4:451–458
    [Google Scholar]
  30. Macario A. J. L., Conway de Macario E. 1985 Monoclonal antibodies for predefined molecular specificity for identification and classification of methanogens and for probing their ecological niches. 213–247 Macario A. J. L., Conway de Macario E.ed Monoclonal antibodies against bacteria Academic Press, Inc.; Orlando, Fla:
    [Google Scholar]
  31. Madsen T., Licht D. 1992; Isolation and characterization of an anaerobic chlorophenol-transforming bacterium. Appl. Environ. Microbiol 58:2874–2878
    [Google Scholar]
  32. Mesbah M., Premachandran U., Whitman W. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol 39:159–167
    [Google Scholar]
  33. Nielsen P., Mathrani L. M., Ahring B. K. 1993; Temperature-dependent enumeration and characterization of anaerobic, thermophilic xylandegrading bacteria present in two Icelandic hot springs. FEMS Microbiol. Ecol 12:79–86
    [Google Scholar]
  34. Pfennig N., Widdel F., Triiper H. G. 1981 The dissimilatory sulfatereducing bacteria. 926–944 Starr M. P., Stolp H., Triiper H. G., Balows A., Schlegel H. G.ed The prokaryotes Springer; Berlin:
    [Google Scholar]
  35. Postgate J. R. 1963; Versatile medium for the enumeration of sulfatereducing bacteria. Appl. Microbiol 11:265–267
    [Google Scholar]
  36. Postgate J. R. 1984 The sulphate-reducing bacteria, 2nd. Cambridge University Press; Cambridge:
    [Google Scholar]
  37. Saber D. L., Crawford R. L. 1985; Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl. Environ. Microbiol 50:1512–1518
    [Google Scholar]
  38. Scholz-Muramatsu H., Neumann A., Messmer M., Moore E., Diekert G. 1995; Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch. Microbiol 163:48–56
    [Google Scholar]
  39. Shelton D. R., Tiedje J. M. 1984; Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl. Environ. Microbiol 48:840–848
    [Google Scholar]
  40. Skyring G. W., Jones H. E. 1972; Guanine plus cytosine contents of the deoxyribonucleic acids of some sulfate-reducing bacteria: a reassessment. J. Bacteriol 109:1298–1300
    [Google Scholar]
  41. Sorensen A. H., Winther-Nielsen M., Ahring B. K. 1991; Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sJudge: the influence of sludge adaptation for start-up of thermophilic UASB-reactors. Appl. Microbiol. BiotechnoL 34:823–827
    [Google Scholar]
  42. Stanier R. Y., Ingraham J. L., Wheelis M. L., Painter P. R. 1987 General microbiology. , 5th. Macmillan Education; Ltd., Hong Kong:
    [Google Scholar]
  43. Stookey L. L. 1970; Ferrozine-a new spectrophotometric reagent for iron. Anal. Chem 42:779–782
    [Google Scholar]
  44. Suflita J. M., Horowitz A., Shelton D. R., Tiedje J. M. 1982; Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds. Science 218:1115–1117
    [Google Scholar]
  45. Tsuchiya T., Yamaha T. 1984; Reductive dechlorination of 1,2,4-trichlorobenzene by Staphylococcus epidermidis isolated from intestinal contents of rats. Agric. Biol. Chem 48:1545–1550
    [Google Scholar]
  46. Utkin I., Woese C., Wiegel J. 1994; Isolation and characterization of Desulfitobacterium dehalogenans gen, nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int. J. Sys. Bacteriol 44:612–619
    [Google Scholar]
  47. Weston J. A., Knowles C. J. 1973; A soluble CO-binding c-type cytochrome from the marine bacterium Beneckea natriegens. Biochim. Biophys. Acta 305:11–18
    [Google Scholar]
  48. Widdel F., Kohring G.-W., Mayer F. 1983; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch. Microbiol 134:286–294
    [Google Scholar]
  49. Zehnder A. B. J., Wuhrmann K. 1976; Titanium(III) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 194:1165–1166
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-2-442
Loading
/content/journal/ijsem/10.1099/00207713-46-2-442
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error