1887

Abstract

The organism described in this paper, strain ST90 (T = type strain), is a thermophilic, spore-forming, rod-shaped sulfate reducer that was isolated from North Sea oil reservoir formation water. In cultivation the following substances were used as electron donors and carbon sources: H-CO, lactate, pyruvate, ethanol, propanol, butanol, and C to C and C to C carboxylic acids. Sulfate was used as the electron acceptor in these reactions. Lactate was incompletely oxidized. Sulfite and thiosulfate were also used as electron acceptors. In the absence of an electron acceptor, the organism grew syntrophically on propionate together with a hydrogenothrophic methanogen. The optimum conditions for growth on lactate and sulfate were 62°C, pH 6.7, and 50 to 200 mM NaCI. The G+C content was 56 mol%, as determined by high-performance liquid chromatography and 57 mol% as determined by thermal denaturation. Spore formation was observed when the organism was grown on butyrate or propanol as a substrate and at low pH values. On the basis of differences in G+C content and phenotypic and immunological characteristics when the organism was compared with other thermophilic species, we propose that strain ST90 is a member of a new species, can be quickly identified and distinguished from closely related species by immunoblotting.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-2-397
1996-04-01
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/2/ijs-46-2-397.html?itemId=/content/journal/ijsem/10.1099/00207713-46-2-397&mimeType=html&fmt=ahah

References

  1. Antloga K. M., Griffin W. M. 1985; Characterization of sulfate-reducing bacteria isolated from oilfield waters. Dev. Ind. Microbiol 26:597–610
    [Google Scholar]
  2. Barth T., Riis M. 1992; Interactions between organic acid anions in formation waters and reservoir mineral phases. Org. Geochem 19:455–482
    [Google Scholar]
  3. Beeder J., Nilsen R. K., Rosnes J. T., Torsvik T., Lien T. 1994; Archaeoglobus fulgidus isolated from hot North Sea oil field waters. AppL Environ. Microbiol 60:1227–1231
    [Google Scholar]
  4. Beeder J., Torsvik T., Lien T. 1995; Thermodesulforhabdus norvegicus, gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch. Microbiol 164:331–336
    [Google Scholar]
  5. Borgund A. E., Barth T. 1994; Generation of short-chained organic acids from crude oil by hydrous pyrolysis. Org. Geochem 21:943–952
    [Google Scholar]
  6. Burnette W. N. 1981; “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem 112:195–203
    [Google Scholar]
  7. Campbell L. L., Postgate J. R. 1965; Classification of the spore-forming sulfate-reducing bacteria. Bacteriol. Rev 29:359–363
    [Google Scholar]
  8. Christensen B., Torsvik T., Lien T. 1992; Immunomagnetic captured thermophilic sulfate-reducing bacteria from North Sea oil field waters. AppL Environ. Microbiol 58:1244–1248
    [Google Scholar]
  9. Cochrane W. J., Jones P. S., Sanders P. F., Holt D. M, Mosley M. J. 1988; Studies on the thermophilic sulfate-reducing bacteria from a souring North sea oil field. Soc. Petrol. Eng. SPE 18368:301–316
    [Google Scholar]
  10. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate reducing bacteria. J. Microbiol. Methods 4:33–36
    [Google Scholar]
  11. Cord-Ruwisch R., Kleinitz W., WiddeL F. 1987; Sulfate-reducing bacteria and their activities in oil production. J. Petrol. Technol 1:97–106
    [Google Scholar]
  12. Cunningham A. B., Bouwer E. J., Characklis W. G. 1990 Biofilms in porous media. 697–732 Characklis W. G., Marshall K. C.ed Biofilms Wiley; New York:
    [Google Scholar]
  13. Daumas S., Cord-Ruwisch R., Garcia J. L. 1988; Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water. Antonie Leeuwenhoek 54:165–178
    [Google Scholar]
  14. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol 101:738–754
    [Google Scholar]
  15. DeSoete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrica 48:621–626
    [Google Scholar]
  16. Fardeau M.-L., Ollivier B., Patel B. K. C., Dwivedi P., Ragot M., Garcia J.-L. 1995; Isolation and characterization of a thermophilic sulfate-reducing bacterium, Desulfotomaculum thermosapovorans sp. nov. Int. J. Syst. Bacteriol 45:218–221
    [Google Scholar]
  17. Heppner B., Zellner G., Diekmann H. 1992; Start-up and operation of a propionate-degrading fluidized-bed reactor. Appl. Microbiol. Biotechnol 36:810–816
    [Google Scholar]
  18. Isaksen M. F., Bak F., Jorgensen B. B. 1994; Thermophilic sulfatereducing bacteria in cold marine sediment. FEMS Microbiol. Ecol 14:1–8
    [Google Scholar]
  19. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  20. Karnauchow T. M., Koval S. F., Jarrell K. F. 1992; Isolation and characterization of three thermophilic anaerobes from a St. Lucia hot spring. Syst. Appl. Microbiol 15:296–310
    [Google Scholar]
  21. Kilburn K. H. 1993; Case report: profound neurobehavorial deficits in an oil field worker overcome by hydrogen sulfide. Am. J. Med. Sci 306:301–305
    [Google Scholar]
  22. Klemps R., Cympionka H., Widdel F., Pfennig N. 1985; Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species. Arch. Microbiol 143:203–208
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685
    [Google Scholar]
  24. Lewan M. D., Fisher J. B. 1994 Organic acids from petroleum source rocks. 70–114 Pittman E. D., Lewan M. D.ed Organic acids in geological processes Springer-Verlag; Berlin:
    [Google Scholar]
  25. Logan N. A. 1994 Bacterial systematics Blackwell Scientific Publication; Oxford:
    [Google Scholar]
  26. Love C. A., Patel B. K. C., Nichols P. D., Stackebrandt E. 1993; Desulfotomaculum australicum sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst. Appl. Microbiol 16:244–251
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol 39:159–167
    [Google Scholar]
  28. Min H., Zinder S. H. 1990; Isolation and characterization of a thermophilic sulfate-reducing bacterium, Desulfotomaculum thermoacetoxidans sp. nov. Arch. Microbiol 153:399–404
    [Google Scholar]
  29. Nazina T. N., Ivanova A. E., Kanchaveli L. P., Rozanova E. P. 1987; A new sporeforming thermophilic methylothrophic bacterium, Desulfotomaculum kuznetsovii sp. nov. Microbiology (Engl. Transl. Mikrobiologiya) 57:659–663
    [Google Scholar]
  30. Nazina T. N., Rozanova E. P. 1977; Thermophilic sulfate reducing bacterium from oil strata. Microbiology (Engl. Transl. Mikrobiologiya) 47:773–778
    [Google Scholar]
  31. Nilsen R. IC, Torsvik T. 1996; Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl. Environ. Microbiol 62:728–731
    [Google Scholar]
  32. Odom J. M. 1993 Industrial and environmental activities of sulfate-reducing bacteria. 189–210 Odom J. M., Singleton R. Jr.ed The sulfatereducing bacteria: contemporary perspectives Springer-Verlag; New York:
    [Google Scholar]
  33. Oude Elferink S. J, Visser W. H. A., Hulshoff Pol L. W., Stains A. J. M. 1994; Sulfate reduction in methanogenic bioreactors. FEMS Microbiol. Rev 15:119–136
    [Google Scholar]
  34. Pfennig N. 1978; Rhodocyceus purpuras gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int. J. Syst. Bacteriol 28:283–288
    [Google Scholar]
  35. Postgate J. R. 1984 The sulfate-reducing bacteria, 2nd. Cambridge University Press; Cambridge:
    [Google Scholar]
  36. Rainey F. A., Dorsch M., Moian H. W., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta thermophila’. position and implications for the systematics of the order Spirochaetales. Syst. Appl. Microbiol 16:224–226
    [Google Scholar]
  37. Rees G. N., Grassia G. S., Sheeny A. J., Dwivedi P. P., Patel B. K. C. 1995; Desulfacinum infemum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int. J. Syst. Bacteriol 45:85–89
    [Google Scholar]
  38. Rosnes J. T., Graue A., Lien T. 1991; Activity of sulfate-reducing bacteria under simulated reservoir conditions. Soc. Petrol. Eng. SPE 19429:217–220
    [Google Scholar]
  39. Rosnes J. T., Torsvik T., Lien T. 1991; Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Appl. Environ. Microbiol 57:2302–2307
    [Google Scholar]
  40. Rozanova E. P., Pirovanova T. A. 1986; Reclassification of D. thermophilus (Rozanova and Khudyakova 1974). Microbiology (Engl. Transl. Mikrobiologiya) 57:85–89
    [Google Scholar]
  41. Silhavy T. J., Berman M. L., Enquist L. W. 1984 Procedure 25. DNA extraction from bacterial cells. 137–139 Experiments with gene fusions Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y:
    [Google Scholar]
  42. Silhavy T. J., Berman M. L., Enquist L. W. 1984 Procedure 40. Phenol/chloroform extraction of DNA samples. 177–179 Experiments with gene fusions Cold Spring Harbor Laboratory; Cold Spring Harbor, N.Y:
    [Google Scholar]
  43. Spurr A. R. 1969; A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res 26:31–43
    [Google Scholar]
  44. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol 44:846–849
    [Google Scholar]
  45. Stetter K. O., Huber R., Blochl E., Kurr M., Eden R. D., Fielder M., Cash H., Vance I. 1993; Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature (London) 365:743–745
    [Google Scholar]
  46. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett 25:125–128
    [Google Scholar]
  47. Tanimoto Y., Bak F. 1994; Anaerobic degradation of methylmercaptan and dimethyl sulfide by newly isolated thermophilic sulfate-reducing bacteria. Appl. Environ. Microbiol 60:2450–2455
    [Google Scholar]
  48. Tasaki M., Kamagata Y., Nakamura K., Mikami E. 1991; Isolation and characterization of a thermophilic benzoate-degrading, sulfate-reducing bacterium, Desulfotomaculum thermobenzoicum sp. nov. Arch. Microbiol 155:348–352
    [Google Scholar]
  49. Tvedt B., Skyberg K., Aaserud O., Hobbesland A., Mathisen T. 1991; Brain damage caused by hydrogen sulfide: a follow-up study of six patients. Am. J. Ind. Med 20:91–101
    [Google Scholar]
  50. Visuvanathan S., Moss M. T., Stanford J. L., Hermon-Taylor J., McFadden J. J. 1989; Simple enzymatic method for the isolation of DNA from diverse bacteria. J. Microbiol. Methods 10:59–64
    [Google Scholar]
  51. Walther-Mauruschat A., Aragno M., Mayer F., Schlegel H. G. 1977; Micromorphology of Gram-negative hydrogen bacteria. II. Cell envelope, membranes, and cytoplasmatic inclusions. Arch. Microbiol 114:101–110
    [Google Scholar]
  52. Werkmann C. H., Weaver H. J. 1927; Studies in the bacteriology of sulphur stinkers spoilage of canned sweet corn. Iowa State Coll. J. Sci 2:57–67
    [Google Scholar]
  53. Widdel F., Kohring G. W., Mayer F. 1983; Studies of dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. and sp. nov. and Desulfonema magnum sp. nov. Arch. Microbiol 134:286–294
    [Google Scholar]
  54. Widdel F., Pfennig N. 1981; Studies of dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov. and sp. nov. Arch. Microbiol 129:395–400
    [Google Scholar]
  55. Widdel F., Pfennig N. 1984 Dissimilatory sulfateand sulfur-reducing bacteria. 663–679 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  56. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J. Biol. Chem 238:2882–2886
    [Google Scholar]
  57. Wu W. M., Jain M. K., Conway de Macario E., Thiele J. H., Zeikus J. G. 1992; Microbial composition and characterization of prevalent methanogens and acetogens isolated from syntrophic methanogenic granules. Appl. Microbiol. Biotechnol 38:282–290
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-2-397
Loading
/content/journal/ijsem/10.1099/00207713-46-2-397
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error