1887

Abstract

We characterized a microbial strain that was isolated from a hot spring at a geothermal area in Hakone, Japan. This isolate, whose lobed-shaped cells were about 1.0 μ in diameter, was a facultative chemolithoautotroph that required aerobic conditions for growth. The optimum pH was 3.0 (pH range, 1.0 to 4.0), and the optimum temperature was 70°C (temperature range, 50 to 80°C). Lithotrophically, this strain grew on elemental sulfur and reduced sulfur compounds. The G+C content of the genomic DNA was 38.4 mol%. This organism contained calditoglycerocaldarchaeol, which is characteristic of members of the . The levels of 16S rRNA sequence similarity between the new isolate and , and were less than 89.8%. Unlike , and , the new isolate utilized sugars and amino acids poorly as sole carbon sources, and the levels of DNA-DNA hybridization between the new isolate and these species were very low. Phenotypically, the new isolate was also distinct from the obligately lithotrophic organism . We concluded that the new organism belongs to a new species, for which we propose the name

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-2-377
1996-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/2/ijs-46-2-377.html?itemId=/content/journal/ijsem/10.1099/00207713-46-2-377&mimeType=html&fmt=ahah

References

  1. Brierley C. L., Brierley J. A. 1973; A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Can. J. Microbiol 19:183–188
    [Google Scholar]
  2. Brock T. D., Brock K. M., Belly R. T., Weiss R. L. 1972; Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. MikrobioL 84:54–68
    [Google Scholar]
  3. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol 101:738–754
    [Google Scholar]
  4. De Rosa M., Gambacorta A. 1988; The lipids of archaebacteria. Prog. Lipid Res 27:153–157
    [Google Scholar]
  5. De Rosa M., Gambacorta A., BuTock J. D. 1975; Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius. J. Gen. Microbiol 86:156–164
    [Google Scholar]
  6. De Rosa M., Gambacorta A., Nicolaus B., Chappe B., Albrecht P. 1983; Isoprenoid ethers; backbone of complex lipids of the archaebacterium Sulfolobus solfataricus. Biochim. Biophys. Acta 753:249–256
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  8. Furuya T., Nagano T., Itoh T., Kaneko H. 1980; A thermophilic acidophilic bacterium from hot spring. Agric. Biol. Chem 44:517–521
    [Google Scholar]
  9. Grogan D., Palm P., Zillig W. 1990; Isolate B12, which harbours a virus-like element, represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp. nov. Arch. Microbiol 154:594–599
    [Google Scholar]
  10. Huber G., Spinnler C., Gambacorta A., Stetten K. O. 1989; Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metalmobilizing, thermoacidophilic archaebacteria. Syst. AppL Microbiol 12:3847
    [Google Scholar]
  11. Huber G., Stetter K. O. 1991; Sulfolobus metallicus, sp. nov., a novel strictly chemolithoautotrophic thermophilic archaeal species of metal-mobilizers. Syst. Appl. MicrobioL 14:372–378
    [Google Scholar]
  12. Itoh Y. HL. Personal communication
  13. Johnson J. L. 1984 Contribution of nucleic acid studies to bacterial taxonomy. 11 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic microbiology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  14. Kellenberger E., Ryter A., Sechand J. 1958; Electron microscope study of DNA-containing plasma. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J. Biophys. Biochem. Cytol 4:671–676
    [Google Scholar]
  15. Kimura M. 1983 The natural theory of molecular evolution. 55–97 Cambridge University Press; Cambridge:
    [Google Scholar]
  16. Kissane J. M., Robins E. 1958; The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system. J. Biol. Chem 233:184–188
    [Google Scholar]
  17. Kurosawa N., Itoh Y. H. 1993; Nucleotide sequence of the 16S rRNA gene from thermoacidophilic archaea Sulfolobus acidocaldarius ATCC 33909. Nucleic Acids Res 21:357
    [Google Scholar]
  18. Lane D. J., Pace B., Olsen G. J, Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribossomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  19. Lo S.-L., Montague C. E., Chang E. L. 1989; Purification of glycerol dialkyl nonitol tetraether from Sulfolobus acidocaldarius. J. Lipid Res 30:944–949
    [Google Scholar]
  20. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  21. Nishimura M., Morii H., Koga Y. 1987; Structure determination of a quartet of novel tetraether lipids from Methanobacterium thermoautotrophicum, J. Biochem 101:1007–1015
    [Google Scholar]
  22. Olsen G. J., Pace N. R., Nuell M., Kaine B. P., Gupta R., Woese C. R. 1985; Sequence of the 16S rRNA gene from thermoacidophilic archaebacterium Sulfolobus solfataricus and its evolutionary implications. J. Mol. Evol 22:301–307
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–425
    [Google Scholar]
  24. Segerer A., Neuner A., Krisljanssoii J. K., Stetter K. O. 1986; Acidianus infemus gen. nov., sp. nov., and Acidianus brierleyi comb, nov.: facultatively aerobic, extremely acidophilic, thermophilic, sulfer-metabolizing archaebacteria. Int. J. Syst. Bacteriol 36:559–564
    [Google Scholar]
  25. Segerer A., Trincone A., Gahrtz M., Stetter K. O. 1991; Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermophilic archaebacteria of the order Sulfolobales. Int. J. Syst. Bacteriol 41:495–501
    [Google Scholar]
  26. Stetter K. O. 1989 Order III. Sulfolobales ord. nov.. 2250–2253 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  27. Sugai A., Sakuma R., Fukuda I., Kurosawa N., Itoh Y. H., Ando S., Itoh T. 1995; The structure of the core polyol of the ether lipids from Sulfolobus acidocaldarius. Lipids 30:339–344
    [Google Scholar]
  28. Suzuki K., Kaneko T., Komagata K. 1981; Deoxyribonucleic acid homologies among coryneform bacteria. Int. J. Syst. Bacteriol 31:131–138
    [Google Scholar]
  29. Takayanagi S., Morimura S., Kusaoke H., Yokoyama Y., Kano K., Shioda M. 1992; Chromosomal structure of the halophilic archaebacterium Halobacterium salinarium. J. Bacteriol 174:7207–7216
    [Google Scholar]
  30. Woese C. R., Kandler O., Wheelis M. L. 1990; Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eukarya. Proc. Natl. Acad. Sci. USA 87:4547–4579
    [Google Scholar]
  31. Zillig W. 1993; Confusion in the assignments of Sulfolobus sequences to Sulfolobus species. Nucleic Acids Res 22:5273
    [Google Scholar]
  32. Zillig W., Stetter K. O., Wunderl S., Schulz W., Priess H., Scholz L. 1980; The S〃仇也group: taxonomy on the bases of the structure of DNA-dependent RNA polymerases. Arch. Microbiol 125:259–269
    [Google Scholar]
  33. Zillig W., Yeats S., Holz I., Boeck A., Rettenberger M., Gropp F., Simon G. 1986; Desulfurolobus ambivalens, new genus new species, an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Syst. Appl. MicrobioL 8:197–209
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-2-377
Loading
/content/journal/ijsem/10.1099/00207713-46-2-377
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error