1887

Abstract

Two strains of a new gram-positive coryneform bacterium isolated from soil and from a sandstone surface are described. Strain 2002-39/1 (T = type strain) is a coccoid, nonmotile, non-acid-fast, microaerophilic organism. The menaquinones of this strain are MK-12 and MK-11, and the main components of the whole-cell sugars are glucose and rhamnose. No mycolic acids are present. The G+C content of the DNA is 74 mol%. Comparative 16S ribosomal DNA studies and a cell wall analysis revealed that this strain represents a new genus belonging to the group of actinomycetes that have diaminobutyric acid in their peptidoglycans. The second strain, strain ST54, which was isolated from a sandstone surface, had the same characteristic features as strain 2002-39/1. The name gen. nov., sp. nov., is proposed for these organisms. The type strain is strain 2002-39/1, which has been deposited in the German Collection of Microorganisms and Cell Cultures as strain DSM 9580.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-1-234
1996-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/1/ijs-46-1-234.html?itemId=/content/journal/ijsem/10.1099/00207713-46-1-234&mimeType=html&fmt=ahah

References

  1. Collins M. D., Jones D. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J. AppL Bacteriol 48:459–470
    [Google Scholar]
  2. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and coiynebacteria. J. Gen. Microbiol 100:221–230
    [Google Scholar]
  3. Cowan S. T., Steel K. J. 1965 Manual for the identification of medical bacteria Cambridge University Press; Cambridge:
    [Google Scholar]
  4. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  5. DSM-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH 1993 Catalog of strains. , 5th. DSM-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; Brauschweig, Germany:
    [Google Scholar]
  6. Fiedler H.-P., Kohn A. 1993; High performance liquid chromatographic screening of new bacterial drugs using UV absorbance spectral libraries. Eur. Microbiol 2:39–44
    [Google Scholar]
  7. Gledhill W. E., Casida L. E. Jr. 1969; Predominant catalase-negative soil bacteria. III. Agromyces, gen. n., microorganisms intermediary to Actinomyces and Nocardia. Appl. Microbiol 18:340–349
    [Google Scholar]
  8. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N. 1974; Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int. J. Syst. Bacteriol 24:54–63
    [Google Scholar]
  9. Hacene H., Sabaou N., Bounaga N., Lefebvre G. 1994; Screening for non-polyenic antifungal antibiotics produced by rare Actinomycetales. Microbios 79:81–85
    [Google Scholar]
  10. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. J. Bacteriol 66:24
    [Google Scholar]
  11. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mamalian protein metabolism Academic Press; New York:
    [Google Scholar]
  12. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  13. MacKenzie S. L. 1987; Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J. Assoc. Off. Anal. Chem 70:151–160
    [Google Scholar]
  14. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol 39:159–167
    [Google Scholar]
  16. Minnikin D. E., Alshamaony L., Goodfellow M. 1975; Differentiation of Mycobacteriumy Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J. Gen. Microbiol 88:200–204
    [Google Scholar]
  17. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J. Appl. Bacteriol 47:87–95
    [Google Scholar]
  18. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta thermophila\ position and implications for the systematics of the order Spirochaetales. Syst. Appl. Microbiol 16:224–226
    [Google Scholar]
  19. Rainey F. A., Weiss N., Prauser H., Stackebrandt E. 1994; Further evidence for the phylogenetic coherence of the actinomycetes with group B-peptidoglycan and evidence for the phylogenetic intermixing of the genera Microbacterium and Aureobacterium as determined by 16S rDNA analysis. FEMS Microbiol Le壮 118:135–140
    [Google Scholar]
  20. Saddler G. S., Tavecchia P., Lociuro S., Zanol M., Colombo L., Selva E. 1991; Analysis of madurose and other actinomycete whole cell sugars by gas chromatography. J. Microbiol. Methods 14:185–191
    [Google Scholar]
  21. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev 36:407–477
    [Google Scholar]
  22. Stead D. E., Sellwood J. E., Wilson J., Viney I. 1992; Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J. Appl. Bacteriol 72:315–321
    [Google Scholar]
  23. Takeuchi M., Yokota A. 1994; Phylogenetic analysis of the genus Microbacterium based on 16S rDNA gene sequences. FEMS Microbiol. Lett 124:11–16
    [Google Scholar]
  24. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett 25:125–128
    [Google Scholar]
  25. Uchida K., Aida K. 1984; An improved method for the glycolate test for simple identification of the acyl type of bacteria cell walls. J. Gen. Appl. Microbiol 30:131–134
    [Google Scholar]
  26. Yamada K., Komagata K. 1972; Taxonomic studies on coryneform bacteria. IV. Morphological, cultural, biochemical, and physiological characteristics. J. Gen. Appl. Microbiol 18:399–416
    [Google Scholar]
  27. Zgurskaya H. L., Evtushenko L. I., Akimov V. N., Kalakoutskii L. V. 1993; Rathayibacter gen. nov., including the species Rathayibacter rathayi comb, nov., Rathayibacter tritici comb. nov., Rathayibacter iranicus comb, nov., and six strains from annual grasses. Int. J. Syst. Bacteriol 43:143–149
    [Google Scholar]
  28. Zgurskaya H. I., Evtushenko L. I., Akimov V. N., Voyevoda H. V., Dobrovolskaya T. G., Lysak L. V., Kalakoutskii L. V. 1992; Emended description of the genus Agromyces and description of Agromyces cerinus subsp. cerinus sp. nov., subsp. nov., Agromyces cerinus subsp. nitratus sp. nov., subsp. nov., Agromyces fucosus subsp. fucosus sp. nov., subsp. nov., and Agromyces fucosus subsp. hippuratus sp. nov., subsp. nov. Int. J. Syst. Bacteriol 42:635–641
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-1-234
Loading
/content/journal/ijsem/10.1099/00207713-46-1-234
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error