1887

Abstract

The phylogenetic positions of 40 strains were determined by performing a comparative sequence analysis of the 16S rRNA genes of these organisms. We found that all of the strains which we studied belong to cluster XIVa (M. D. Collins, P. A. Lawson, A. Willems. J. J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J. A. E. Farrow, Int. J. Syst. Bacteriol. 44:812-826, 1994) of the subphylum of the gram-positive bacteria, which also includes several , and species. We also found that the strains which we examined were genotypically heterogeneous and exhibited 12 distinct rRNA sequence types. The 12 rRNA sequence types formed three distinct lineages in cluster XIVa, which were separate from each other and from all other species belonging to this cluster. One lineage consisted of strains which exhibited a single rRNA and corresponded to the species . The second lineage consisted of 12 strains designated which exhibited seven distinct rRNA sequence types. The type strain of was a member of this lineage, but its position was peripheral. The third lineage comprised 26 strains which exhibited four distinct rRNA sequence types. Tree topology and sequence divergence considerations indicated that the three lineages correspond to three separate genera and that the genus should be restricted to the group that contains the type strain of

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-1-195
1996-01-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/1/ijs-46-1-195.html?itemId=/content/journal/ijsem/10.1099/00207713-46-1-195&mimeType=html&fmt=ahah

References

  1. Bryant M. P. 1984 Genus IV. Butyrivibrio Bryant and Small 1956, 18, emend. Moore, Johnson and Holdeman 1976. 641–643 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams and Wilkins Co.; Baltimore:
    [Google Scholar]
  2. Bryant M. P., Robinson I. M. 1962; Some nutritional characteristics of predominant culturable ruminal bacteria. J. Bacteriol 84:605–614
    [Google Scholar]
  3. Bryant M. P., Small N. 1956; The anaerobic monotrichous butyric acid-producing curved rod-shaped bacteria of the rumen. J. Bacteriol 72:16–21
    [Google Scholar]
  4. Cheng K.J., Costerton J. W. 1977; Ultrastructure of Butyrivibrio fibrisolvens: a gram-positive bacterium? J. Bacteriol 129:1506–1512
    [Google Scholar]
  5. Collins M. D., Lawson P. A., Willems A., Cordoba J. J, Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Sy st. Bacteriol 44:812–826
    [Google Scholar]
  6. Devereux J., Haeberli P., Smithies D. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  7. Dibbayawan T., Cox G., Cho K. Y., Dwarte D. M. 1985; Cell wall and plasma membrane architecture of Butyrivibrio spp. J. Ultrastruct. Res 90:286–293
    [Google Scholar]
  8. Felsenstein J. 1989; PHYLIP–phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  9. Hazlewood G. P., Theodorou M. K., Hutchings A., Jordan D. J., Galfre G. 1986; Preparation and characterization of monoclonal antibodies to a Butyrivibrio sp. and their potential use in the identification of rumen butyrivibrios, using an enzyme-linked immunosorbent assay. J. Gen. Microbiol 132:43–52
    [Google Scholar]
  10. Hespell R. B. 1992; Fermentation of xylans by Butyrivibrio fibrisolvens and Thermoanaerobacter strain B6A: utilization of uronic acids and xylanolytic activities. Curr. Microbiol 25:189–195
    [Google Scholar]
  11. Hespell R. B. 1992 The genera Butyrivibrioi Lachnospira, and Roseburia,. 2022–2033 Balows A., Triiper H. G, Dworkin M., Harder W., Schleifer K.-H.ed The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, application, 2nd. II SpringerVerlag; New York:
    [Google Scholar]
  12. Hespell R. B., Kato K., Costerton J. W. 1993; Characterization of the cell wall of Butyrivibrio species. Can. J. Microbiol 39:912–921
    [Google Scholar]
  13. Hori H., Osawa S. 1979; Evolutionary change in 5S rRNA secondary structure and phylogenetic tree of 54 5S rRNA species. Proc. Natl. Acad. Sci. USA 76:381–385
    [Google Scholar]
  14. Lawson P. A., Gharbia S. E., Shah H. N., Clark D. R. 1989; Recognition of Fusobacterium nucleatum subgroups Fn-1, Fn-2 and Fn-3 by ribosomal RNA gene restriction patterns. FEMS Microbiol. Lett 65:41–16
    [Google Scholar]
  15. Mannarelli B. M. 1988; Deoxyribonucleic acid relatedness among strains of the species Butyrivibrio fibrisolvens. Int. J. Sy st. Bacteriol 38:340–347
    [Google Scholar]
  16. Mannarelli B. M., Stack R. J., Lee D., Ericsson L. 1990; Taxonomic relatedness of Butyrivibrio, Lachnospira, Roseburia, and Eubacterium species as determined by DNA hybridization and extracellular-polysaccharide analysis. Int. J. Syst. Bacteriol 40:370–378
    [Google Scholar]
  17. Margherita S. S., Hungate R. E. 1963; Serological analysis of Butyrivibrio from the bovine rumen. J. Bacteriol 86:855–860
    [Google Scholar]
  18. Miron J. 1991; The hydrolysis of lucerne cell-wall monosaccharide components by monocultures or pair combinations of defined ruminal bacteria. J, Appl. Bacteriol 70:245–252
    [Google Scholar]
  19. Miron J., Benghedahlia D. 1993; Digestion of cell-wall monosaccharides of ryegrass and alfalfa hays by the ruminal bacteria Fibrobacter succinogenes and Butyrivibrio fibrisolvens. Can. J. Microbiol 39:780–786
    [Google Scholar]
  20. Moore W. E. C., Johnson J. L., Holdeman L. V. 1976; Emendation of Bacteroidaceae and Butyrivibrio and description of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus. Int. J. Syst. Bacteriol 26:238–252
    [Google Scholar]
  21. Orpin C. G., Mathiesen S. D., Greenwood Y., Blix A. S. 1985; Seasonal changes in the ruminal microflora of the high-arctic Svalbard reindeer (Rangifer tarandus platyrhynchus). Appl. Environ. Microbiol 50:144–151
    [Google Scholar]
  22. Rainey F. A., Janssen P. H. 1995; Phylogenetic analysis by 16S ribosomal DNA sequence comparison reveals two unrelated groups of species within the genus Ruminococcus. FEMS Microbiol. Lett 129:69–74
    [Google Scholar]
  23. Roche C., Albertyn H., van Gylswyk N. O., Kistner A. 1973; The growth response of cellulolytic acetate-utilizing and acetate-producing butyrivibrios to volatile fatty acids and other nutrients. J. Gen. Microbiol 78:253–260
    [Google Scholar]
  24. Rumney C. J., Duncan S. H., Henderson C., Stewart C. S. 1995; Isolation and characteristics of a wheatbran-degrading Butyrivibrio from human feces. Lett. Appl. Microbiol 20:232–236
    [Google Scholar]
  25. Shane B. S., Gouws L., Kistner A. 1969; Cellulolytic bacteria occurring in the rumen of sheep conditioned to low-protein teff hay. J. Gen. Microbiol 55:445–457
    [Google Scholar]
  26. Stack R. J. 1988; Neutral sugar composition of extracellular polysaccharides produced by strains of Butyrivibrio fibrisolvens, Appl. Environ. Microbiol 54:878–883
    [Google Scholar]
  27. Williams A. G., Withers S. E. 1992; Induction of xylan degrading enzymes in Butyrivibrio fibrisolvens. Curr. Microbiol 25:297–303
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-1-195
Loading
/content/journal/ijsem/10.1099/00207713-46-1-195
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error