1887

Abstract

Phase-contrast light microscopy revealed that only one of eight cultivated strains belonging to the group of sheathed bacteria actually produced a sheath in standard growth media. Two strains produced branched cells, but other morphological characteristics that were used to identify these bacteria were consistent with previously published descriptions. Genomic fingerprints, which were obtained by performing PCR amplification with primers corresponding to enterobacterial repetitive intergenic consensus sequences, were useful for distinguishing between the genera and , as well as among individual strains. The complete 16S ribosomal DNA (rDNA) sequences of two strains of “ (strains SP-6 and SS-1) were determined. In addition, partial sequences (approximately 300 nucleotides) of one strain of (strain LMG 7171), an unidentified strain (strain NC-1), and four strains of (strains ATCC 13338 [T = type strain], ATCC 15291, ATCC 29329, and ATCC 29330) were determined. We found that two of the strains (ATCC 15291 and ATCC 13338), which differed in morphology and in their genomic fingerprints, had identical sequences in the 300-nucleotide region sequenced. Both parsimony and distance matrix methods were used to infer the evolutionary relationships of the eight strains in a comparison of the 16S rDNA sequences of these organisms with 16S rDNA sequences obtained from ribosomal sequence databases. All of the strains clustered in the subdivision of the β subclass of the , which confirmed previously published conclusions concerning selected individual strains. Additional analyses revealed that all of the strains clustered in one closely related group, while the strains clustered in two separate lineages that were approximately equidistant from the cluster. This finding suggests that the tentative species “ needs to be more clearly defined and compared with other species belonging to the genus

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-46-1-173
1996-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/46/1/ijs-46-1-173.html?itemId=/content/journal/ijsem/10.1099/00207713-46-1-173&mimeType=html&fmt=ahah

References

  1. Adams L. F., Ghiorse W. C. 1986; Physiology and ultrastructure of Leptothrix discophora SS-1. Arch. Microbiol 145:126–135
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.ed 1992 Short protocols in molecular biology, 2nd. John Wiley & Sons; New York:
    [Google Scholar]
  3. Avgustin G., Wright F., Flint H. J. 1994; Genetic diversity and phylogenetic relationships among strains of Prevotella (Bacteroides) mminocola from the rumen. Int. J. Syst. Bacteriol 44:246–255
    [Google Scholar]
  4. Brosius J., Palmer H. L., Kennedy J. P., NoIler H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75:4801–4805
    [Google Scholar]
  5. Busse H. J., EI-Banna T., Oyaizu H., Auling G. 1992; Identification of xenobiotic-degrading isolates from the beta subclass of the Proteobacteria by a polyphasic approach including 16S rRNA partial sequencing. Int. J. Syst. Bacteriol 42:19–26
    [Google Scholar]
  6. Chung C. T., Niemal S. L., Miller R. H. 1989; One-step transformation of competent Escherichia coir, transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. USA 86:2172–2175
    [Google Scholar]
  7. Colwell R. R. 1970 Polyphasic taxonomy of bacteria. 421–436 Iizuka H., Hasegawa T.ed Culture collections of microorganisms University of Tokyo Press; Tokyo:
    [Google Scholar]
  8. Corstjens P., Muyzer G. 1993; Phylogenetic analysis of the metaloxidizing bacteria Leptothrix discophora and Sphaerotilus natans using 16S rDNA sequence data. Syst. Appl. Microbiol 16:219–223
    [Google Scholar]
  9. Corstjens P. L. 1993; Bacterial oxidation of iron and manganese–a molecular biological approach. Ph.D. thesis Leiden University; Leiden, The Netherlands:
    [Google Scholar]
  10. Corsljens P. L. Personal communication
  11. de Bruijn F. J. 1992; Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl. Environ. Microbiol 58:2180–2187
    [Google Scholar]
  12. Devereux J. P., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395
    [Google Scholar]
  13. Emerson D., Ghiorse W. C. 1992; Isolation, cultural maintenance, and taxonomy of a sheath-forming strain of Leptothrix discophora and characterization of manganese-oxidizing activity associated with the sheath. Appl. Environ. Microbiol 58:4001–4010
    [Google Scholar]
  14. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol 17:368–376
    [Google Scholar]
  15. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  16. Felsenstein J. 1993 PHYLIP (phylogenetic inference package), version 3.5c Department of Genetics; University of Washington, Seattle:
    [Google Scholar]
  17. Fitch W. M. 1971; Toward defining the course of evolution: minimal change for a specific tree topology. Syst. ZooL 20:406–416
    [Google Scholar]
  18. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees. Science 155:279–284
    [Google Scholar]
  19. Gherna R., Pienta P.ed 1992 American Type Culture Collection catalogue of bacteria and bacteriophages. , 18th. American Type Culture Collection; Rockville, Md:
    [Google Scholar]
  20. Gherna R., Woese C. R. 1992; A partial phylogenetic analysis of the “flavobactejbacteroidcs” phylum: basis for taxonomic reconstructuring. Syst. Appl. Microbiol 15:513–521
    [Google Scholar]
  21. Ghiorse W. C. 1984; Biology of ironand manganese-depositing bacteria. Annu. Rev. Microbiol 38:515–550
    [Google Scholar]
  22. Ghiorse W. C., Chapnick S. D. 1983; Metal-depositing bacteria and the distribution of manganese and iron in swamp waters. Environmental biogeochemistry. Ecol. Bull. (Stockholm) 35:367–376
    [Google Scholar]
  23. Ghiorse W. C., Ehrlich H. L. 1992 Microbial biomineralization of iron and manganese. 75–101 Fitzpatrick R. W., Skinner H. C. W.ed Biomineralization processes of iron and manganese: modern and ancient environments Catena Verlag; Cremlingen-Destedt, Germany:
    [Google Scholar]
  24. Herrick J. B. Personal communication
  25. Herrick J. B., Madsen E. L., Batt C. A., Ghiorse W. C. 1993; Polymerase chain reaction amplification of naphthalene-catabolic and 16S rRNA gene sequences from indigenous sediment bacteria. Appl. Environ. Microbiol 59:687–694
    [Google Scholar]
  26. Hillis D. M., Bull J. J., White M. R., Molineux I. J. 1992; Experimental phylogenetics: generation of a known phylogeny. Science 255:589–592
    [Google Scholar]
  27. Hillis D. M., Huelsenbeck J. P., Cunningham C. W. 1994; Application and accuracy of molecular phylogenies. Science 264:671–677
    [Google Scholar]
  28. Hulton C. S. J., Higgins C. F., Sharp P. M. 1991; ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coll, Salmonella typhimurium and other enterobacteria. Mol. Microbiol 5:825–834
    [Google Scholar]
  29. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. 21–132 Munro H. N.ed Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  30. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol 16:111–120
    [Google Scholar]
  31. Lane D. J., Harrison A. P. Jr., Stahl D., Pace B., Giovannoni S. J., Olsen G. J., Pace N. R. 1992; Evolutionary relationships among sulfurand iron-oxidizing eubacteria. J. Bacteriol 174:269–278
    [Google Scholar]
  32. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  33. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. 1993; The Ribosomal Database Project. Nucleic Acids Res 21:3021–3023
    [Google Scholar]
  34. Louws F. J., Fulbright D. W., Stephens C. T., Bruijn F. J. de. 1994; Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl. Environ. Microbiol 60:2286–2295
    [Google Scholar]
  35. Mulder E. G. 1989 Sheathed bacteria–genus Haliscomenobacter,. 2003–2004 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 Williams and Wilkins; Baltimore:
    [Google Scholar]
  36. Mulder E. G. 1989 Sheathed bacteria-genus Leptothrix,. 1998–2003 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 Williams and Wilkins; Baltimore:
    [Google Scholar]
  37. Mulder E. G. 1989 Sheathed bacteria–genus Sphaerotilus,. 1994–1998 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 Williams and Wilkins; Baltimore:
    [Google Scholar]
  38. Mulder E. G., Hirsch P. 1989 Sheathed bacteria. 1994–2008 Staley J. T., Bryant M. P., Pfennig N., Holt J. G.ed Bergey’s manual of systematic bacteriology 3 William and Wilkins; Baltimore:
    [Google Scholar]
  39. Murray R. G. E., Brenner D. J., Colwell R. R., De Vos P., Goodfellow M., Grimont P. A. D., Pfennig N., Stackebrandt E., Zavarzin G. A. 1990; Report of the Ad Hoc Committee on Approaches to Taxonomy within the Proteobacteria. Int. J. Syst. Bacteriol 40:213–215
    [Google Scholar]
  40. Olsen G. J. 1988; Phylogenetic analysis using ribosomal RNA. Methods Enzymol 164:793–812
    [Google Scholar]
  41. Olsen G. J., Lane D. J., Giovannoni S. J., Pace N. R., Stahl D. A. 1986; Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol 40:337–365
    [Google Scholar]
  42. Pringsheim E. G. 1949; Iron bacteria. Biol. Rev. Camb. Philos. Soc 24:200–245
    [Google Scholar]
  43. Saitou N.j, Imanishi T. 1989; Relative efficiencies of the Fitch-Margoliash, maximum parsimony, maximum likelihood, minimum evolution, and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree. Mol. BioL Evol 6:514–525
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular cloning: a laboratory manual, 2nd. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, N.Y:
    [Google Scholar]
  45. Sanger F. S., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467
    [Google Scholar]
  46. Siering P. L., Ghiorse W. C. 1994 Development and application of 16S rRNA-targeted probes for detection of ironand manganese-oxidizing sheathed bacteria in environmental samples, abstr. N-154. 342 Abstracts of the 94th General Meeting of the American Society for Microbiology 1994 American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  47. Sourdis J., Nei M. 1988; Relative efficiencies of the maximum parsimony and distance-matrix methods in obtaining the correct phylogenetic tree. Mol. Biol. Evol 5:298–311
    [Google Scholar]
  48. Stackebrandt Er, Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol 44:846–849
    [Google Scholar]
  49. Swofford D. L. 1991 PAUP: phylogenetic analysis using parsimony, version 3.0s Illinois Natural History Survey; Champaign:
    [Google Scholar]
  50. Swofford D. L., Olsen G. J. 1990 Phylogeny reconstruction. 411–515 Hillis D. M., Moritz C.ed Molecular systematics Sinauer Associates, Inc.; Sunderland, Mass:
    [Google Scholar]
  51. Versalovic J., Koeuth T., Lupski J. R. 1991; Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting in bacterial genomes. Nucleic Acids Res 19:6823–6831
    [Google Scholar]
  52. Ward D. M., Bateson M. M., Weller R., Ruff-Roberts A. L. 1992 Ribosomal RNA analysis of microorganisms as they occur in nature. 219–286 Marshall K. C.ed Advances in microbial ecology Plenum Press; New York:
    [Google Scholar]
  53. Wayne L. G., Brenner D., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Triiper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol 37:463–464
    [Google Scholar]
  54. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. 1991; 16S ribosomal DNA for phylogenetic study. J. Bacteriol 173:697–703
    [Google Scholar]
  55. Willems A., Gillis M., Ley J. De. 1991; Transfer of Rhodocyclus gelatinosus to Rubrivivax gelatinosus gen. nov., comb. nov„ and phylogenetic relationships with Leptothrix, Sphaerotilus natans, Pseudomonas saccharophila, and Alcaligenes latus. Int. J. Syst. Bacteriol 41:65–73
    [Google Scholar]
  56. Wilson K. H., Blitchington R. B., Greene R. C. 1990; Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J. Clin. Microbiol 28:1942–1946
    [Google Scholar]
  57. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev 51:221–271
    [Google Scholar]
  58. Wong F. Y. K., Stackebrandt E., Ladha J. K., Fleischman D. E., Date R. A., Fuerst J. A. 1994; Phylogenetic analysis of Bradyrhizobium japonicum and photosynthetic stem-nodulating bacteria from Aeschynomene species grown in separated geographical regions. Appl. Environ. Microbiol 60:940–946
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-46-1-173
Loading
/content/journal/ijsem/10.1099/00207713-46-1-173
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error