1887

Abstract

The G+C contents of the DNAs of 41 strains belonging to the genus Redhead et Malloch were determined by the thermal denaturation method. Melting profiles revealed that the DNAs of these strains are heterogeneous. Four groups were recognized on the basis of this heterogeneity. However, DNA similarity values, which were calculated by using DNA-DNA reassociation kinetics, revealed that the strains could be divided into six subgroups. Strains belonging to the same subgroup exhibited high levels of DNA similarity (84 to 100%). The members of two subgroups, corresponding to and , exhibited low levels of DNA similarity with the members of the other subgroups (20 to 27%). The members of the four remaining subgroups, which contained only strains previously identified as , exhibited intermediate levels of reassociation (41 to 59%). Some combinations of phenotypic characteristics correlated with the subgroups; a key based on phenotypic characteristics that can be used to distinguish the subgroups is presented.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-4-826
1995-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/4/ijs-45-4-826.html?itemId=/content/journal/ijsem/10.1099/00207713-45-4-826&mimeType=html&fmt=ahah

References

  1. Aulakh H., Straus S. E., Kwon-Chung K. J. 1981; Genetic relatedness of Filobasidiella neoformans (Cryptococcus neoformans) and Filobasidiella bacillispora (Cryptococcus bacillisporus) as determined by deoxyribonucleic acid base composition and sequence homology studies. Int. J. Syst. Bacteriol. 31:97–103
    [Google Scholar]
  2. Britten B. J., Pavich M., Smith J. 1970; A new method for DNA purification. Carnegie Inst. Wash. Year Book 68:400–402
    [Google Scholar]
  3. de Hoog G. S., Smith M. T., Guého E. 1986; A revision of the genus Geotrichum and its teleomorphs. Stud. Mycol. 29:1–131
    [Google Scholar]
  4. Guého E., Tredick J., Phaff H. J. 1985; DNA relatedness among species of Geotrichum and Dipodascus. . Can. J. Bot. 63:961–966
    [Google Scholar]
  5. Jahnke K.-D. 1984; Artabgrenzung durch DNA-Analyse bei einigen Vertretern der Strophariaceae (Basidiomycetes). Bibl. Mycol. 96:1–183
    [Google Scholar]
  6. Jahnke K.-D. 1987; Assessing natural relationships by DNA analysis techniques and applications,. 227–246 de Hoog G. S. The expanding realm of yeasts and yeast-like fungi Elsevier Science Publishers; Amsterdam:
    [Google Scholar]
  7. Jahnke K.-D., Bahnweg G. 1986; Assessing natural relationships in the basidiomycetes by DNA analysis. Trans. Br. Mycol. Soc. 87:175–191
    [Google Scholar]
  8. Kurtzman C. P. 1987; Prediction of biological relatedness among yeasts from comparisons of nuclear DNA complementarity,. 459–468 de Hoog G. S. The expanding realm of yeasts and yeast-like fungi Elsevier Science Publishers; Amsterdam:
    [Google Scholar]
  9. Kurtzman C. P. 1991; DNA relatedness among saturn-spored yeasts assigned to the genera Williopsis and Pichia. . Antonie Lceuwenhoek 60:13–19
    [Google Scholar]
  10. Kurtzman C. P., Phaff H. J., Meyer S. A. 1983; Nucleic acid relatedness among yeasts,. 139–166 Spencer F. T. J. Yeast genetics: fundamental and applied aspects Springer Verlag; New York:
    [Google Scholar]
  11. Kurtzman C. P., Smiley M. J., Johnson C. J. 1980; Emendation of the genus Issatchenkia Kudriavzev and comparison of species by deoxyribonucleic acid reassociation, mating reaction, and ascospore ultrastructure. Int. J. Syst. Bacteriol. 30:503–513
    [Google Scholar]
  12. Kurtzman C. P., Smiley M. J., Johnson C. J., Wickerham L. J. 1980; Two new closely related heterothallic species, Pichia amylophila and Pichia mississippiensis: characterization by hybridization and deoxyribonucleic acid reassociation. Int. J. Syst. Bacteriol. 30:206–216
    [Google Scholar]
  13. Kwon-Chung K. J., Bennett J. F., Rhodes J. C. 1982; Taxonomic studies on Filobasidiella species and their anamorphs. Antonie Leeuwenhoek 48:25–38
    [Google Scholar]
  14. Marmur J., Doty P. 1962; Determination of the base composition of DNA from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  15. Mendonça-Hagler L. C., Hagler A. N., Phaff H. J., Tredick J. 1985; DNA relatedness among aquatic yeasts of the genus Metschnikowia and proposal of the species Metschnikowia australis comb. nov.. Can. J. Microbiol. 31:905–909
    [Google Scholar]
  16. Owen R. J., Hill L. P., Lapage S. P. 1969; Determination of DNA base composition from melting profiles in dilute buffers. Biopolymers 7:503–516
    [Google Scholar]
  17. Paterson R. R. M., King G. J., Bridge P. D. 1990; High resolution thermal denaturation studies on DNA from 14 Penicillium strains. Mycol. Res. 94:152–156
    [Google Scholar]
  18. Price C. W., Fuson G. B., Phaff H. J. 1978; Genome comparison in yeast systematics: delimitation of species within the genera Schwanniomyces, Saccharomyces, Debaryomyces, and Pichia. . Microbiol. Rev. 42:161–193
    [Google Scholar]
  19. Seidler R. J., Mandel M. 1971; Quantitative aspects of deoxyribonucleic acid renaturation: base composition, site of chromosome replication, and polynucleotide homologies. J. Bacteriol. 106:608–614
    [Google Scholar]
  20. Steensma H. Y., de Jongh F. C. M., Linnekamp M. 1988; The use of electrophoretic karyotypes in the classification of yeasts: Kluyveromyces marxianus and K. lactis. . Curr. Genet. 14:311–317
    [Google Scholar]
  21. Sugita T., Nishikawa A., Shinoda T. 1992; DNA relatedness among the three varieties of Cryptococcus albidus. . J. Gen. Appl. Microbiol. 38:83–86
    [Google Scholar]
  22. Sugita T., Nishikawa A., Shinoda T. 1994; Rectification of Trichosporon cutaneum by DNA relatedness by the spectrophotometric method and the chemiluminometric method. J. Gen. Appl. Microbiol. 40:397–408
    [Google Scholar]
  23. van der Walt J. P., Johannsen E. 1979; A comparison of interfertility and in vitro DNA-DNA reassociation as criteria for speciation in the genus Kluyveromyces. . Antonie Leeuwenhoek 45:281–291
    [Google Scholar]
  24. van der Walt J. P., Yarrow D. 1984; Methods for isolation, maintenance, classification and identification of yeasts,. 45–104 Kreger-van Rij N. J. W. The yeasts: a taxonomic study,, 3. Elsevier Science Publishers; Amsterdam:
    [Google Scholar]
  25. Vaughan-Martini A. 1991; Intraspecific discontinuity within the yeast species Cryptococcus albidus as revealed by nDNA’nDNA reassociation. Exp. Mycol. 15:140–145
    [Google Scholar]
  26. Vaughan-Martini A., Sidenberg D. G., Lachance M.-A. 1987; Analysis of a hybrid between Kluyveromyces marxianus and Kluyveromyces thermotolerans by physiological profile comparison, isoenzyme electrophoresis, DNA reassociation, and restriction mapping of ribosomal DNA. Can. J. Microbiol. 33:971–978
    [Google Scholar]
  27. Vishniac H., Bahareen S. 1982; Five new basidioblastomycetous yeast species segregated from Cryptococcus vishniacii emend, auct., an antarctic yeast species comprising four new varieties. Int. J. Syst. Bacteriol. 32:437–445.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-4-826
Loading
/content/journal/ijsem/10.1099/00207713-45-4-826
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error