Phenotypic Characterization, DNA Similarities, and Protein Profiles of Twenty Sulfur-Metabolizing Hyperthermophilic Anaerobic Archaea Isolated from Hydrothermal Vents in the Southwestern Pacific Ocean Free

Abstract

We performed phenotypic and physiological studies with 20 hyperthermophilic microorganisms isolated from hydrothermal vents located in the North Fiji Basin (southwestern Pacific Ocean) at a depth of 2,000 m. These isolates were strict anaerobes that were regular to irregular coccoids and used elemental sulfur in their metabolism. Growth was observed at temperatures ranging from 50 to 101°C. The DNA base compositions varied from 43 to 60 mol%. All of these organisms were heterotrophs and fermented peptides to acetate, isovalerate, isobutyrate, and propionate. They contained both diether and tetraether lipids in their membranes, which indicates that they belong to the domain . DNA-DNA hybridization experiments revealed that there were two distinct homology groups, which correlated well with results obtained from sodium dodecyl sulfate-polyacrylamide gel electrophoresis of soluble whole-cell proteins, and these groups corresponded to the genera and . Five isolates exhibited levels of DNA-DNA relatedness with ranging from 71 to 100% and produced almost identical protein patterns. The remaining isolates formed a weakly homogeneous group based on DNA-DNA similarity data and protein patterns; the results of unweighted pair group cluster analyses suggested that these isolates were members of five new species of the genus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-4-623
1995-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/4/ijs-45-4-623.html?itemId=/content/journal/ijsem/10.1099/00207713-45-4-623&mimeType=html&fmt=ahah

References

  1. Auzende J. M., Urabe T., Deplus C., Eissen J. P., Grimaud D., Huchon P., Ishibashi J., Iwaabuchi Y., Jarvis P., Joshima M., Kisimoto K., Kuwahara Y., Lafoy Y., Matsumoto T., Mazé J. P., Mitsuzawa K., Monma H., Nafanuma T., Nojiri Y., Otha S., Otsuka K., Okuda Y., Ondreas H., Otsuki A., Ruellan E., Sibuet M., Tanahashi M., Tanaka T., Urabe T. 1990; Active spreading and hydrothermalism in North Fiji Basin (SW Pacific) Results of Japanese French cruise Kaiyo 87. Mar. Geophys. Res 12:269–283
    [Google Scholar]
  2. Balch W., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol 32:781–791
    [Google Scholar]
  3. Balch W. E., Fox G. E., Magrum L. S., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol. Rev 43:260–296
    [Google Scholar]
  4. Belkin S., Jannasch H. W. 1985; A new extremely thermophilic sulfur-reducing heterotrophic bacterium. Arch. Microbiol 141:181–186
    [Google Scholar]
  5. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipids extraction and purification. Can. J. Biochem. Physiol 35:911–917
    [Google Scholar]
  6. Boivin M. F., Morris V. L., Lee-Chan E. C. M., Murray R. G. E. 1985; Deoxyribonucleic acid relatedness between selected members of the genus Aquaspirillum by slot blot hybridization: Aquaspirillum serpens (Mueller 1786) Hylemon, Wells, Krieg, and Jannasch 1973 emended to include Aquaspirillum bengal as a subjective synonym. Int. J. Syst. Bacteriol 35:512–517
    [Google Scholar]
  7. Bonch-Osmolovskaya E. A., Stetter K. O. 1991; Interspecies hydrogen transfer in cocultures of thermophilic archaea. Syst. Appl. Microbiol 14:205–208
    [Google Scholar]
  8. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem 72:248–254
    [Google Scholar]
  9. Cato E. P., Hash D. E., Holdeman L. V., Moore W. E. C. 1982; Electrophoretic study of Clostridium species. J. Clin. Microbiol 15:688–702
    [Google Scholar]
  10. Charbonnier F., Erauso G., Barbeyron T., Prieur D., Forterre P. 1992; Evidence that a plasmid from a hyperthermophilic archaebacterium is relaxed at physiological temperatures. J. Bacteriol 174:6103–6108
    [Google Scholar]
  11. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J. Microbiol. Methods 4:33–36
    [Google Scholar]
  12. Corliss J. B., Dymond J., Gordon L. I., Edmond J. M., Von Herzen R. P., Ballard R. D., Green K., Williams D., Bainbridge A., Crane K., Van Andel T. H. 1979; Submarine thermal springs on the Galapagos Rift. Science 203:1073–1083
    [Google Scholar]
  13. Deming J. W., Baross J. A. 1993; Deep-sea smokers: windows to a subsurface biosphere?. Geochim. Cosmochim 57:3219–3229
    [Google Scholar]
  14. De Rosa M., Gambacorta A., Trincone A., Basso A., Zillig W., Holz I. 1987; Lipids of Thermococcus celer a sulfur-reducing archaebacterium: structure and biosynthesis. Syst. Appl. Microbiol 9:1–5
    [Google Scholar]
  15. Di Ruggiero J., Robb F. T., Klump H. H., Borges K. M., Kessel M., Mai X., Adams M. W. W. 1993; Characterization, cloning and in vitro expression of the extremely thermostable glutamate dehydrogenase from the hyperthermophilic archaeon, ES4. J. Biol. Chem 268:17767–17774
    [Google Scholar]
  16. Erauso G. Unpublished data
    [Google Scholar]
  17. Erauso G., Godfroy A., Raguénès G., Prieur D. Plate cultivation techniques for strictly anaerobic, thermophilic, sulfur-metabolising archaea. Fleischmann E. M., Place A. R., Robb F. T., Schreier H. J. Archaea: a laboratory manual, in press Cold Spring Harbor Laboratory Press; Cold Spring Harbor, N.Y:
    [Google Scholar]
  18. Erauso G., Reysenbach A. L., Godfroy A., Meunier J. R., Crump B., Partensky F., Baross J. A., Marteinsson V., Barbier G., Pace N. R., Prieur D. 1993; Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch. Microbiol 160:338–349
    [Google Scholar]
  19. Fiala G., Stetter K. O. 1986; Pyrococcus furiosus sp. nov. represents a new genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch. Microbiol 145:56–61
    [Google Scholar]
  20. Fiala G., Stetter K. O., Jannasch H. W., Langworthy T. A., Madon J. 1986; Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98°C. Syst. Appl. Microbiol 8:106–113
    [Google Scholar]
  21. Fouquet Y., Von Stackelberg U., Charlou J. L., Donval J. P., Erzinger J., Foucher J. P., Hezig P., Mühe R., Soakai S., Wiedicke M., Whitechurch H. 1991; Hydrothermal activity and metallogenesis in the Lau backarc basin. Nature London: 349778–781
    [Google Scholar]
  22. Grimont P. A. D., Popoff M. Y., Grimont F., Colette C., Memelin M. 1980; Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr. Microbiol 4:325–330
    [Google Scholar]
  23. Hoaki T., Nishijima M., Kato M., Adachi K., Mizobuchi S., Hanzawa N., Maruyama T. 1994; Growth requirements of hyperthermophilic sulfur-dependent heterotrophic archaea isolated from a shallow submarine geothermal system with reference to their essential amino acids. Appl. Environ. Microbiol 60:2898–2904
    [Google Scholar]
  24. Hoaki T., Wirsen C. O., Hanzawa S., Maruyama T., Jannasch H. W. 1993; Amino acid requirements of two hyperthermophilic archaeal isolates from deep-sea vents, Desulfurococcus strain SY and Pyrococcus strain GB-D. Appl. Environ. Microbiol 59:610–613
    [Google Scholar]
  25. Huber R., Stoffer P., Cheminee J. L., Richnow H. H., Stetter K. O. 1990; Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting MacDonald Seamount. Nature London: 354179–181
    [Google Scholar]
  26. Jannasch H. W., Wirsen C. O., Molyneaux S. J., Langworthy T. A. 1988; Extremely thermophilic fermentative archaebacterium of the genus Desulfurococcus from deep-sea hydrothermal vents. Appl. Environ. Microbiol 54:1203–1209
    [Google Scholar]
  27. Jannasch H. W., Wirsen C. O., Molyneaux S. J., Langworthy T. A. 1992; Comparative physiological studies of hyperthermophilic archaea isolated from deep-sea hydrothermal vents. Appl. Environ. Microbiol 58:3472–3481
    [Google Scholar]
  28. Johnson J. L. 1984; Nucleic acid in bacterial classification. 8–11 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology I The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  29. Johnson J. L. 1985; DNA reassociation and RNA hybridization of bacterial nucleic acids. Methods Microbiol 18:33–74
    [Google Scholar]
  30. Kafatos F. C., Jones C. W., Efsratiadis A. 1979; Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res 7:1541–1545
    [Google Scholar]
  31. Kobayashi T., Kwak I. S., Akiba T., Kudo T., Horikoshi K. 1994; Thermococcus profundus sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Syst. Appl. Microbiol 17:232–236
    [Google Scholar]
  32. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature London: 227680–685
    [Google Scholar]
  33. Lanzotti V., Trincone A., Nicolaus B., Zillig W., de Rosa M., Gambacorta A. 1989; Complex lipids of Pyrococcus and AN1, thermophilic members of the archaebacteria belonging to the Thennococcales . Biochim. Biophys. Acta 1004:44–48
    [Google Scholar]
  34. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance-tempcra-ture profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12:195–206
    [Google Scholar]
  35. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol 5:109–118
    [Google Scholar]
  36. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol 39:159–167
    [Google Scholar]
  37. Miroshnichenko M. L., Bonch-Osmolovskaya E. A., Neuner A., Kostrikina N. A., Chernych N. A., Alekseev V. A. 1989; Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium. Syst. Appl. Microbiol 12:257–262
    [Google Scholar]
  38. Morikawa M., Izawa Y., Rashid N., Hoaki T., Imanaka T. 1994; Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Appl. Environ. Microbiol 60:4559–4566
    [Google Scholar]
  39. Neuner A., Jannasch H. W., Belkin S., Stetter K. O. 1990; Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch. Microbiol 153:205–207
    [Google Scholar]
  40. Pledger R. J., Baross J. A. 1989; Characterization of an extremely thermophilic archaebacterium from a black smoker polychaete (Puralvinella sp.) at Juan de Fuca Ridge. Syst. Appl. Microbiol 12:249–256
    [Google Scholar]
  41. Pledger R. J., Baross J. A. 1991; Preliminary description and nutritional characterization of a chemoorganotrophic archaebacterium growing at up to 110°C isolated from a submarine hydrothermal vent environment. J. Gen. Microbiol 137:203–211
    [Google Scholar]
  42. Pley U., Schipka J., Gambacorta A., Jannasch H. W., Frieke H., Rachel R., Stetter K. O. 1991; Pyrodictium abyssi sp. nov. represents a novel heterotrophic marine archaeal hyperthermophile growing at 110°C. Syst. Appl. Microbiol 14:245–253
    [Google Scholar]
  43. Prieur D. 1992; Physiology and biotechnological potential of deep-sea bacteria. 163–197 Herbert R. A., Sharp R. J. Molecular biology and biotechnology of extremophiles Blackie; London:
    [Google Scholar]
  44. Prieur D., Erauso G., Jeanthon C. 1995; Hyperthermophilic life at deep-sea hydrothermal vents. Planet. Space Sci 43:115–122
    [Google Scholar]
  45. Reysenbach A. L., Deming J. W. 1991; Effects of hydrostatic pressure on growth of hyperthermophilic archaebacteria from Juan de Fuca Ridge. Appl. Environ. Microbiol 57:1271–1274
    [Google Scholar]
  46. Ross H. N. M., Collins D. D., Tindall B. J., Grant W. D. 1981; A rapid procedure for the detection of archaebacterial lipids in halophilic bacteria. J. Gen. Microbiol 131:165–173
    [Google Scholar]
  47. Schönheit P., Schäfer T. 1995; Metabolism of hyperthermophiles. World J. Microbiol. Biotechnol 11:26–57
    [Google Scholar]
  48. Stetter K. O., König H., Stackebrandt E. 1983; Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105°C. Syst. Appl. Microbiol 4:535–551
    [Google Scholar]
  49. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Truper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. Syst. Bacteriol 37:463–464
    [Google Scholar]
  50. White D. C., Bobbie R. J., King J. D., Nickels J. S., Amoe P. 1979; Lipid analysis of sediments for microbial biomass and community structure. 87–103 Liitchfield C. D., Seyfried P. L. Methodology for biomass determinations and microbial activities in sediments American Society for Testing and Materials; Washington, D.C:
    [Google Scholar]
  51. Woese C. R., Kandler O., Wheelis M. L. 1990; Towards a natural system of organisms: proposal for the domains Archaea Bacteria and Eucarya . Proc. Natl. Acad. SciUSA 87:4576–4579
    [Google Scholar]
  52. Zillig W. 1992; The order Thermococcales . 702–706 Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K. H. The prokaryotes, 2. Springer-Verlag; Heidelberg, Germany:
    [Google Scholar]
  53. Zillig W., Holtz I., Janekovic D., Klenk H.-P., Imsel E., Trent J., Wunderl S., Forjaz V. H., Coutinho R., Ferreira T. 1990; Hyperthermus butylicus a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J. Bacteriol 172:3959–3965
    [Google Scholar]
  54. Zillig W., Holtz I., Janekovic D., Schafer W., Reiter W. D. 1983; The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archeabacteria. Syst. Appl. Microbiol 4:88–94
    [Google Scholar]
  55. Zillig W., Holtz I., Klenk H. P., Trent J., Wunderl S., Janekovic D., Imsel E., Haas B. 1987; Pyrococcus woesei sp. nov., an ultra-thermophilic marine archaebacterium, representing a novel order, Thermococcales . Syst. Appl. Microbiol 9:62–70
    [Google Scholar]
  56. Zillig W., Holtz I., Wunderl S. 1991; Hyperthermus butylicus gen. nov., sp. nov., a hyperthermophilic, anaerobic, peptide-fermenting, facultatively H2S-generating archaebacterium. Int. J. Syst. Bacteriol 41:169–170
    [Google Scholar]
  57. Zillig W., Stetter K. O., Prangishwilli D., Schafer W., Wunderl S., Janekovic D., Holz I., Palm P. 1982; Desulfurococcaceae the second family of extremely thermophilic, anaerobic sulfur-respiring Thermoproteales. Zentralbl. Bakteriol. Parasitenkd. Infektionskr Hyg. Abt. 1 Orig 3:304–317
    [Google Scholar]
  58. Zillig W., Stetter K. O., Wunderl S., Shulz W., Priess H., Scholz J. 1980; The Sulfolobus-”Caldariella” group: taxonomy on the basis of the structure of DNA-dcpendent RNA-polymerases. Arch. Microbiol. 1980:125–259
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-4-623
Loading
/content/journal/ijsem/10.1099/00207713-45-4-623
Loading

Data & Media loading...

Most cited Most Cited RSS feed