1887

Abstract

Taxonomic characteristics of seven bacterial strains which were isolated from soil and hydrolyze resistant curdlan were studied. These bacteria were aerobic, spore-forming rods, contained menaquinone 7 as a major quinone, contained anteiso-C and iso-C as major cellular fatty acids, had guanine-plus-cytosine contents of 50 to 52 mol%, and could be divided into two groups on the basis of physiological and chemotaxonomic characteristics and DNA-DNA hybridization data. We propose the following two new species: for strains YK9, YK121, YK161, YK201, and YK203, with type strain YK9 (= IFO 15724); and for strains YK205 and YK207, with type strain YK205 (= IFO 15729).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-3-515
1995-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/3/ijs-45-3-515.html?itemId=/content/journal/ijsem/10.1099/00207713-45-3-515&mimeType=html&fmt=ahah

References

  1. Alexander B., Priest F. G. 1989; Bacillus glucanolyticus, a new species that degrades a variety of β-glucans. Int. J. Syst. Bacteriol. 39:112–115
    [Google Scholar]
  2. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872,174AL,. 1105–1138 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Bergey’s manual of systematic bacteriology, 2 The Williams and Wilkins Co.; Baltimore:
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39:224–229
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yamamoto H., Lucida M. L., Liu S. L., Kusunoki S., Asano K., Yabuuchi E. 1990; Evaluation of the microplate hybridization method for rapid identification of Legionella species. Eur. J. Clin. Microbiol. Infect. Dis. 9:213–217
    [Google Scholar]
  5. Harada T., Okuyama K., Konno A., Koreeda A., Harada A. 1994; Effect of heating on formation of curdlan gels. Carbohydr. Polym. 24:101–106
    [Google Scholar]
  6. Harada T., Terasaki M., Harada A. 1993; Curdlan,. 427–445 Whistler R. L., BeMiller J. N. Industrial gums,, 3. Academic Press, Inc.; New York:
    [Google Scholar]
  7. Kanzawa Y., Harada A., Harada T. 1991; Production of an enzyme capable of hydrolyzing resistant curdlan by soil bacteria. Home Econ. Jpn. 42:703–709
    [Google Scholar]
  8. Kanzawa Y., Harada T., Koreeda A., Harada A., Okuyama K. 1989; Difference of molecular association in two types of curdlan gel. Carbohydr. Polym. 10:299–313
    [Google Scholar]
  9. Kanzawa Y., Kurasawa T., Kanegae T., Harada A., Harada T. 1994; Purification and properties of a new exo-(1→3)-β-d-glucanase from Bacillus circulans YK9 capable of hydrolyzing resistant curdlan with formation of only laminaribiose. Microbiology (Washington, D.C.) 140:637–642
    [Google Scholar]
  10. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 19:161–207
    [Google Scholar]
  11. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685
    [Google Scholar]
  12. Mesba M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159–167
    [Google Scholar]
  13. Nakamura L. K. 1984; Bacillus amylolyticus sp. nov., nom. rev., Bacillus lautus sp. nov., nom. rev., and Bacillus validus sp. nov., nom. rev. Int. J. Syst. Bacteriol. 34:224–226
    [Google Scholar]
  14. Nakamura L. K. 1987; Bacillus alginolyticus sp. nov. and Bacillus chondroitinus sp. nov., two alginate-degrading species. Int. J. Syst. Bacteriol. 37:284–286
    [Google Scholar]
  15. Nakamura L. K., Swezey J. 1983; Deoxyribonucleic acid relatedness of Bacillus circulans Jordan 1890 strains. Int. J. Syst. Bacteriol. 33:703–708
    [Google Scholar]
  16. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta 72:619–629
    [Google Scholar]
  17. Stone B. A., Clarke A. E. 1992; Enzymes depolymerizing (1→3)-β-glucans. 117–209 Stone B. A., Clarke A. E. Chemistry and biology of (1→3)-β-glucans Trobe University Press; Victoria, Australia:
    [Google Scholar]
  18. Takagi H., Shida O., Kadowaki K., Komagata K., Udaka S. 1993; Characterization of Bacillus brevis with descriptions of Bacillus migulanus sp. nov., Bacillus choshinensis sp. nov., Bacillus parabrevis sp. nov., and Bacillus galactophilus sp. nov. Int. J. Syst. Bacteriol. 43:221–231
    [Google Scholar]
  19. Takahashi F., Harada T., Koreeda A., Harada A. 1986; Structure of curdlan that is resistant to (1→3)-β-d-glucanase. Carbohydr. Polym. 6:407–421
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-3-515
Loading
/content/journal/ijsem/10.1099/00207713-45-3-515
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error