sp. nov., a Cellulolytic Anaerobe from the Pig Intestine Free

Abstract

A new cellulolytic anaerobic clostridium was isolated from the intestinal tract of pigs. The single isolate was a gram-positive, motile rod, formed terminal to subterminal swollen sporangia, and required a fermentable carbohydrate for growth. Cellulose, cellobiose, maltose, starch, and glycogen supported growth, but glucose and fructose did not. The major end products from the fermentation of cellobiose were butyrate and formate; minor amounts of hydrogen and ethanol were also formed. Ruminal fluid (15%) or yeast extract (1%) was required for good growth. The optimum temperature for growth was 39 to 42°C, and the optimum pH was 6.8 to 7.2. Cell lysis occurred rapidly once stationary growth was reached. A 16S rRNA sequence analysis showed that the strain was related to a group of gram-positive anaerobes that includes and the cellulolytic species and . The DNA base composition of the isolate is 38 mol% G+C. We propose the name for this organism; strain 54408 (= ATCC 49925) is the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-3-490
1995-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/3/ijs-45-3-490.html?itemId=/content/journal/ijsem/10.1099/00207713-45-3-490&mimeType=html&fmt=ahah

References

  1. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol. 32:781–791
    [Google Scholar]
  2. Bryant M. P. 1972; Commentary on the Hungate technique for culture of anaerobic bacteria. Am. J. Clin. Nutr. 25:1324–1328
    [Google Scholar]
  3. Cato E. P., George W. L., Finegold S. M. 1986 Cbstridium,1141–1200 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Bergey’s manual of systematic bacteriology, 2 Williams & Wilkins; Baltimore:
    [Google Scholar]
  4. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44:812–826
    [Google Scholar]
  5. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  6. Greening R. C., Leedle J. A. Z. 1989; Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Arch. Microbiol. 151:399–406
    [Google Scholar]
  7. Hethener P., Brauman A., Garcia J. L. 1992; Clostridium termitidis sp. nov., a cellulolytic bacterium from the gut of the wood-feeding termite, Nasulitermes lujae . Syst. Appl. Microbiol. 15:52–58
    [Google Scholar]
  8. Hippe H., Andreesen J. R., Gottschalk G. 1992; The genus Clostridium—nonmedical,. 1800–1866 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. The prokaryotes 2, 2. Springer-Verlag; New York:
    [Google Scholar]
  9. Holdeman L. V., Cato E. P., Moore W. E. C. 1977; Anaerobe laboratory manual,. , 4. Virginia Polytechnic Institute and State University; Blacksburg:
    [Google Scholar]
  10. Holdeman L. V., Moore W. E. C. 1974; New genus, Coprococcus, twelve new species, and emended descriptions of four previously described species of bacteria from human feces. Int. J. Syst. Bacteriol. 24:260–277
    [Google Scholar]
  11. Jantzen E., Hofstad T. 1981; Fatty acids of Fusobacterium species: taxonomic implications. J. Gen. Microbiol. 123:163–171
    [Google Scholar]
  12. Johnson J. L., Francis B. S. 1975; Taxonomy of the clostridia: ribosomal ribonucleic acid homologies among the species. J. Gen. Microbiol. 88:229–244
    [Google Scholar]
  13. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules,. 21–132 Munro H. N. Mammalian protein metabolism, 3 Academic Press; New York:
    [Google Scholar]
  14. Kaneuchi C., Watanabe K., Terada A., Benno Y., Mitsuoka T. 1976; Taxonomic study of Bacteroides clostridiiformis subsp. clostridiiformis (Burri and Ankersmit) Holdeman and Moore and of related organisms: proposal of Clostridium clostridiiformis (Burri and Ankersmit) comb. nov. and Clostridium symbisoum (Stevens) comb. nov. Int. J. Syst. Bacteriol. 26:195–204
    [Google Scholar]
  15. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc. Natl. Acad. Sci.USA 82:6955–6959
    [Google Scholar]
  16. Maidak B. L., Larson N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res. 22:3485–3487
    [Google Scholar]
  17. Miller L. T. 1982; Single derivitization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J. Clin. Microbiol. 16:584–586
    [Google Scholar]
  18. Montgomery L., Flesher B., Stahl D. 1988; Transfer of Bacteroides succinogenes (Hungate) to Fibrobacter gen. nov. as Fibrobacter succinogenes comb. nov. and description of Fibrobacter intestinalis sp. nov. Int. J. Syst. Bacteriol. 38:430–435
    [Google Scholar]
  19. Moore W. E. C., , and Moore L. V. H. 1986 Eubacterium,1353–1373 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Bergey’s manual of systematic bacteriology, 2 Williams & Wilkins; Baltimore:
    [Google Scholar]
  20. Moss C. W., Wallace P. L., Hollis D. G., Weaver R. E. 1988; Cultural and chemical characterization of CDC groups EO-2, M-5, and M-6, Moraxella (Moraxella) species, Oligella urethralis, Acinetobacter species, and Psychrobacter immobilis . J. Clin. Microbiol. 26:484–492
    [Google Scholar]
  21. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; FastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput. Appl. Biosci. 10:41–48
    [Google Scholar]
  22. Ozaizu H., Debrunner-Vossbrinck B., Mandelco L., Studier J. A., Woese C. R. 1987; The green non-sulfur bacteria: a deep branching in the eubacterial line of descent. Syst. Appl. Microbiol. 9:47–53
    [Google Scholar]
  23. Paster B. J., Russell J. B., Yang C. M. J., Chow J. M., Woese C. R., Tanner R. 1993; Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov. Int. J. Syst. Bacteriol. 43:107–110
    [Google Scholar]
  24. Rainey F. A., Stackebrandt E. 1993; 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic clostridia. FEMS Microbiol. Lett. 113:125–128
    [Google Scholar]
  25. Salanitro J. P., Fairchilds I. G., Zgornicki Y. D. 1974; Isolation, culture characteristics, and identification of anaerobic bacteria from the chicken cecum. Appl. Microbiol. 27:678–687
    [Google Scholar]
  26. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101 MIDI, Inc.; Newark, Del:
    [Google Scholar]
  27. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization,. 607–651 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Methods for general and molecular bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  28. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846–849
    [Google Scholar]
  29. Tanner R. S., Woese C. R. 1994; A phylogenetic assessment of the acetogens,. 254–269 Drake H. L. Acetogenesis Chapman & Hall; New York:
    [Google Scholar]
  30. Van Gylswyk N. O. 1980; Fusobacterium polysaccharolyticum sp. nov., a Gram-negative rod from the rumen that produces butyrate and ferments cellulose and starch. J. Gen. Microbiol. 116:157–163
    [Google Scholar]
  31. Van Gylswyk N. O., Morris E. J., Els H. J. 1980; Sporulation and cell wall structure of Clostridium polysaccharolyticum comb. nov. (formerly Fusobacterium polysaccharolyticum). J. Gen. Microbiol. 121:491–493
    [Google Scholar]
  32. Varel V. H. 1989; Reisolation and characterization of Clostridium longisporum, a ruminal sporeforming cellulolytic anaerobe. Arch. Microbiol. 152:209–214
    [Google Scholar]
  33. Varel V. H., Fryda S. J., Robinson I. M. 1984; Cellulolytic bacteria from pig large intestine. Appl. Environ. Microbiol. 47:219–221
    [Google Scholar]
  34. Varel V. H., Pond W. G. 1992; Characteristics of a new cellulolytic Clostridium sp. isolated from pig intestinal tract. Appl. Environ. Microbiol. 58:1645–1649
    [Google Scholar]
  35. Zhao H., Yang D., Woese C. R., Bryant M. P. 1993; Assignment of fatty acid-β-oxidizing syntrophic bacteria to Syntrophomonadaceae fam. nov. on the basis of 16S rRNA sequence analyses. Int. J. Syst. Bacteriol. 43:278–286
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-3-490
Loading
/content/journal/ijsem/10.1099/00207713-45-3-490
Loading

Data & Media loading...

Most cited Most Cited RSS feed