1887

Abstract

Nine moderately alkalitolerant thermophilic bacteria with similar properties were isolated from water and soil samples obtained from Yellowstone National Park. These Gram-type-positive, rod-shaped bacteria produce cells with primary branches. The cells are peritrichous and exhibit only slight tumbling motility. At 60°C the pH range for growth is 6.9 to 10.3, and the optimum pH is 8.5. At pH 8.5 the temperature range for growth is 34 to 66°C, with an optimum temperature of 57°C. The strains are mainly proteolytic. The fermentation products from yeast extract are acetate, CO, and H. Fumarate added to minimal medium containing yeast extract is stoichiometrically converted to succinate, indicating that it is used as an alternative electron acceptor. The DNA G+C content is 33 to 34 mol%. On the basis of its unique properties, such as branch formation, growth at alkaline pH values at elevated temperatures, and the relative distance of its 16S rRNA sequence from those of other known bacteria, we propose that strain JW/YL-138 (T = type strain) and eight similar strains represent a new genus and species, . Strain JW/YL-138 is designated the type strain of the type species, , which was named in honor of Koki Horikoshi, a pioneer in the field of alkaliphilic bacteria.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-3-454
1995-07-01
2022-05-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/3/ijs-45-3-454.html?itemId=/content/journal/ijsem/10.1099/00207713-45-3-454&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1989; Current protocols in molecular biology. 2.4.1–2.4.5 Wiley Intersciences; New York:
    [Google Scholar]
  2. Beuscher N., Mayer F., Gottschalk G. 1974; Citrate lyase from Rhodopseudomonas gelatinosa: purification, electron microscopy and subunit structure. Arch. Microbiol. 100:307–328
    [Google Scholar]
  3. Biggin M. D., Gibson T. J., Hing G. F. 1983; Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc. Natl. Acad. Sci.USA 80:3963–3965
    [Google Scholar]
  4. Blotevogel K., Fischer U., Mocha M., Jannsen S. 1985; Methanobacterium thermoalcaliphilum spec. nov., a new moderately alkaliphilic and thermophilic autotrophic methanogen. Arch. Microbiol. 142:211–217
    [Google Scholar]
  5. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44:812–826
    [Google Scholar]
  6. Cook G. Unpublished data
  7. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  8. Durre P., Andersch W., Andreesen J. R. 1981; Isolation and characterization of an adenine-utilizing, anaerobic sporeformer, Clostridium purinofyticum sp. nov. Int J. Syst. Bacteriol. 31:184–194
    [Google Scholar]
  9. Frasca J. M., Parks V. R. 1965; A routine technique for double-staining ultrathin sections using uranyl and lead salts. J. Cell Biol. 25:157–161
    [Google Scholar]
  10. Freier D., Mothershed C. P., Wiegel J. 1988; Characterization of Clostridium thermocellum JW-20. Appl. Environ. Microbiol. 54:204–211
    [Google Scholar]
  11. Grant W. D., Mwatha W. E., Jones B. E. 1990; Alkaliphiles: ecology, diversity and applications. FEMS Microbiol. Rev. 75:255–270
    [Google Scholar]
  12. Horikoshi K. 1990; Microorganisms in alkaline environments. Kodansha; Tokyo:
    [Google Scholar]
  13. International Committee on Systematic Bacteriology Subcommittee on Clostridia and Related Organisms Unpublished data
  14. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules,. 21–132 Munro H. N. Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  15. Kellenberger E., Ryter A., Sechaud J. 1958; Electron microscopy study of DNA-containing plasma. II. Vegetative and mature phage DNA as compared with normal bacterial nucleosides in different physiological states. J. Biophys. Biochem. Cytol. 4:671–678
    [Google Scholar]
  16. Kroll R. G. 1990; Alkaliphiles,. 55–92 Edwards C. Microbiology of extreme environments McGraw-Hill; New York:
    [Google Scholar]
  17. Krulwich T. A., Guffanti A. A. 1989; Alkalophilic bacteria. Annu. Rev. Microbiol. 43:435–463
    [Google Scholar]
  18. Lane D. J., Pace B., Olsen G. J., Stahl D. A. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci.USA 82:6955–6959
    [Google Scholar]
  19. Lee Y.-E., Jain M. K., Lee C., Lowe S. E., Zeikus J. G. 1993; Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanofyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Themtoanaerobacter brockii comb. nov., Thermo-anaerobacterium thermosulfurogenes comb. nov., and Thermoanaerobacter thermohydrosulfuricum comb. nov., respectively; and transfer of Clostridium thermohydrosulfurieum 39E to Thermoanaerobacter ethanolicus . Int. J. Syst. Bacteriol. 43:41–51
    [Google Scholar]
  20. Li Y., Engle M., Weiss N., Mandelco L., Wiegel J. 1994; Clostridium thermoalcaliphilum sp. nov., an anaerobic thermotolerant facultative alkaliphile. Int. J. Syst. Bacteriol. 43:111–118
    [Google Scholar]
  21. Li Y., Mandelco L., Wiegel J. 1993; Isolation and characterization of a moderately thermophilic alkaliphile, Clostridium paradoxum sp. nov. Int. J. Syst. Bacteriol. 43:450–460
    [Google Scholar]
  22. Lowe S. E., Jain M. K., Zeikus J. G. 1993; Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, and substrates. Microbiol. Rev. 57:451–509
    [Google Scholar]
  23. Maidak B. L., Larson N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. 1994; The Ribosomal Database Project. Nucleic Acids Res. 22:3485–3487
    [Google Scholar]
  24. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  25. Mathrani I. M., Boone D. R., Mah R. A., Fox G. E., Lau P. P. 1988; Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methanotro-phic methanogen. Int. J. Syst. Bacteriol. 38:139–142
    [Google Scholar]
  26. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159–167
    [Google Scholar]
  27. Niimur Y., Koh E., Yanagida F., Suzuki K.-I., Komagata K., Kozaki M. 1990; Amphibacillus xylanus gen. nov., sp. nov., a facultatively anaerobic sporeforming xylan-digesting bacterium which lacks cytochrome, quinone, and catalase. Int. J. Syst. Bacteriol. 40:297–301
    [Google Scholar]
  28. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. CABIOS 10:41–48
    [Google Scholar]
  29. Olsen G. J., Overbeek R., Larson N., Marsh T. L., McCaughey M. J., Maclukenas M. A., Kaun W. M., Macke T. J., Woese C. R. 1992; The Ribosomal Database Project. Nucleic Acids Res 20: Suppl 2199–2200
    [Google Scholar]
  30. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci.USA 74:5463–5467
    [Google Scholar]
  31. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36:407–477
    [Google Scholar]
  32. Sharp R. J., Munster M. J. 1986; Biotechnological implications for microorganisms from extreme environments,. 215–295 Herbert R. A., Codd G. A. Microbes in extreme environments Academic Press; London:
    [Google Scholar]
  33. Shiba H., Yamamoto H., Horikoshi K. 1989; Isolation of strictly anaerobic halophiles from the aerobic surface sediments of hypersaline environments in California and Nevada. FEMS Microbiol. Lett. 57:191–196
    [Google Scholar]
  34. Spurr A. R. 1969; A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastmct. Res. 26:31–43
    [Google Scholar]
  35. Stadtman T. C., Barker H. A. 1951; Studies on the methane fermentation. X. A new formate-decomposing bacterium, Methanococcus vannielli . J. Bacteriol. 62:269–280
    [Google Scholar]
  36. Valentine R. C., , Shapiro B. M., Stadtman E. R. 1968; Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from E. coli . Biochemistry 7:2143–2152
    [Google Scholar]
  37. Vedder A. 1935; Bacillus alcalophilus n. sp.; benevens enkle ervaringen met sterk alcalische voedingsbodems. Antonie van Leeuwenhoek J. Microbiol. Serol. 1:141–147
    [Google Scholar]
  38. Viljoen J. A., Fred E. B., Peterson W. H. 1926; The fermentation of cellulose by thermophilic bacteria. J. Agric. Sci. 16:1–17
    [Google Scholar]
  39. Weisburg W. G., Tully J. G., Rose D. L., Petzel J. P., Oyaizu H., Yang D., Mandelco L., Sechrest J., Lawrence T. G., van Etten J., Maniloff J., Woese C. R. 1989; A phylogenetic analysis of the mycoplasmas: basis for their classification. J. Bacteriol. 171:6455–6467
    [Google Scholar]
  40. Whitman W. B., Sohn S., Caras D. S., Premachandran U. 1986; Isolation and characterization of 22 mesophilic methanococci. Syst. Appl. Microbiol. 7:235–240
    [Google Scholar]
  41. Wiegel J., Ljundahl L. G., Rawson J. R. 1979; Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum . J. Bacteriol. 139:800–810
    [Google Scholar]
  42. Woese C. R., Gutell R., Gupta R., Noller H. F. 1983; Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol. Rev. 47:621–669
    [Google Scholar]
  43. Woese C. R., Sogins M., Stahl D. A., Lewis B. J., Bonen L. 1976; A comparison of the 16S ribosomal RNAs from mesophilic and thermophilic bacilli. J. Mol. Evol. 7:197–213
    [Google Scholar]
  44. Workakit S., Boone D. R., Mah R. A., Abdel-Samie M.-E., El-Halwagi M. M. 1986; Methanobacterium alcaliphilum sp. nov., an H2-utilizing methanogen that grows at high pH values. Int. J. Syst. Bacteriol. 36:380–382
    [Google Scholar]
  45. Zeikus J. G., Henning D. L. 1975; Methanobacterium arbophilicum sp. nov., an obligate anaerobe isolated from wetwood of living trees. Antonie van Leeuwenhoek J. Microbiol. Serol. 41:543–552
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-3-454
Loading
/content/journal/ijsem/10.1099/00207713-45-3-454
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error