1887

Abstract

The total cellular fatty acid contents of 40 recently isolated cyanobacterial symbionts obtained from seven species of host plants were determined by gas-liquid chromatography-mass spectroscopy. A total of 63 fatty acids belonging to seven distinct chemical classes were identified. Fatty acid compositions varied among the cyanobacteria depending on the hosts species. Parameters that differed significantly (at the 99% level of probability) included the concentrations of the 16:0 and 18:3 fatty acids, the total concentrations of the polyunsaturated acids, the total concentrations of the 16-carbon and 18-carbon fatty acids, the ratios of unsaturated fatty acids to saturated fatty acids, and the total percentages of straight-chain even-carbonnumber fatty acids, unsaturated fatty acids, and branched-chain unsaturated fatty acids. The results of an analysis of variance suggested statistical regression for the total percentages of these fatty acids and chemical classes according to the following linear alignment of cyanobacteria by host: , , , , , , and (including subsp. and subsp. ). The seven groups could be divided into two distinct clusters on the basis of the results of a dendrogram analysis of Euclidian distances. The symbionts obtained from . , . , . , and . constituted one cluster, and the symbionts obtained from . , . , and . constituted a second cluster. A minor dichotomy separated the . symbionts from the other members of the first cluster. The clustering of cyanobacterial symbionts based on the results of our fatty acid analysis correlates remarkably well with the taxonomic grouping of the American species. This correlation suggests that the cyanobacterial symbionts of spp. coevolved into distinct genetic groups with their hosts.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-2-364
1995-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/2/ijs-45-2-364.html?itemId=/content/journal/ijsem/10.1099/00207713-45-2-364&mimeType=html&fmt=ahah

References

  1. Caudales R. 1994; Characterization of the symbiotic cyanobacteria in Azolla: morphology, cellular fatty acids, DNA base composition and taxonomy. Ph.D. dissertation. Rutgers-The State University of New Jersey; New Brunswick:
    [Google Scholar]
  2. Caudales R., Antoine A. D., Vasconcelos A. C. 1990; Morphology and life cycle of the nitrogen-fixing cyanobionts in the seven Azolla species. 540 Gresshoff P. M., Evans Roth L., Stacey G., Newton W. E. Nitrogen fixation: achievements and objectivesProceedings of the 8th International Congress on Nitrogen Fixation Chapman and Hall; New York:
    [Google Scholar]
  3. Caudales R., Antoine A. D., Wells J. M. 1992; Cellular fatty acid composition of symbiotic cyanobacteria isolated from the aquatic fern Azolla . J. Gen. Microbiol 138:1489–1494
    [Google Scholar]
  4. Caudales R., Mohabir G., Wells J. M., Antoine A. D. 1993; Metabolic and osmoregulatory adjustments in Azolla-cyanobacteria symbiotic relationship. 255–260 Sato S., Ishida M., Ishikawa H. Endocytobiology V Tubingen University Press; Tübingen, Germany:
    [Google Scholar]
  5. Caudales R., Wells J. M. 1992; Differentiation of the free-living Anabaena and Nostoc cyanobacteria on the basis of fatty acid composition. Int. J. Syst. Bacteriol 42:246–251
    [Google Scholar]
  6. Caudales R., Wells J. M., Butterfleld J. E., Antoine A. D. 1993; Host-related variability in fatty acid composition of symbiotic cyanobacteria isolated from the aquatic fern, Azolla . 261–268 Sato S., Ishida M., Ishikawa H. Endocytobiology V Tubingen University Press; Tubingen, Germany:
    [Google Scholar]
  7. Duckett J. G., Toth R., Soni S. L. 1975; An ultra-structural study of the Azolla-Anabaena azollae relationship. New Phytol 75:111–118
    [Google Scholar]
  8. Fogg G. E., Steward W. D. P., Fay P., Walsby B. 1973; The blue-green algae. Academic Press; New York:
    [Google Scholar]
  9. Franche C., Cohen-Bazire G. 1985; The structural nif genes of four symbiotic Anabaena azollae show higher conserved physical arrangement. Plant Sci. (Lucknow) 39:125–131
    [Google Scholar]
  10. Franche C., Cohen-Bazire G. 1987; Evolutionary divergence in the nif K, D and H genes region among nine symbiotic Anabaena azollae and some free-living heterocystous cyanobacteria. Symbiosis 3:159–178
    [Google Scholar]
  11. Hill D. J. 1975; The pattern of development of Anabaena in the Azolla-Anabaena symbiosis. Planta (Berlin) 122:179–184
    [Google Scholar]
  12. Hills L. V., Gopal B. 1967; Azolla primaeva and its phylogenetic significance. Can. J. Bot 45:1179–1191
    [Google Scholar]
  13. Lumpkin T. A., Plucknett D. L. 1982; Azolla as a green manure: use and management in crop production. Westview Press; Boulder, Colo:
    [Google Scholar]
  14. Mahabale T. S. 1963; Evolutionary tendencies in the genus Azolla . Indian Bot. Soc. Memorial 4:51–54
    [Google Scholar]
  15. Meeks J. C., Joseph C. M., Haselkorn R. 1988; Organization of nif genes in cyanobacteria in symbiotic association with Azolla and Anthoceros . Arch. Microbiol 150:61–71
    [Google Scholar]
  16. Moore A. W. 1969; Azolla: biology and agronomic significance. Bot. Rev 35:17–34
    [Google Scholar]
  17. Perkins S. K., Peters G. A., Lumpkin T. A., Calvert H. E. 1985; Scanning electron microscopy of perine architecture as a taxonomic tool in the genus Azolla Lamarck. Scanning Electron Microsc 4:1719–1734
    [Google Scholar]
  18. Peters G. A. 1991; Azolla and other plant-cyanobacteria symbiosis: aspects of form and function. 377–388 Polsinelli M., Materassi R., Vincenzini M. Nitrogen fixationProceedings of the Fifth International Symposium on Nitrogen Fixation with Non-legumes Kluwer Academic Publishers; Dordrecht, The Netherlands:
    [Google Scholar]
  19. Peters G. A., Mayne B. C. 1974; The Azolla-Anabaena relationship. I. Initial characterization of the association. Plant Physiol 53:813–819
    [Google Scholar]
  20. Peters G. A., Meeks J. C. 1989; The Azolla-Anabaena symbiosis: basic biology. Annu. Rev. Plant Physiol 40:193–210
    [Google Scholar]
  21. Plazinski J., Franche C., Liu C. C., Lin T., Shaw W., Gunning B. E. S., Rolfe B. G. 1988; Taxonomic status of Anabaena azollae: an overview. Plant Soil 108:185–190
    [Google Scholar]
  22. Plazinski J., Zheng G., Tailor R., Croft L., Rolfe B. G., Gunning B. E. S. 1990; DNA probes show genetic variation in cyanobacterial symbionts of the Azolla fern and closer relationship to free-living Nostoc strains than to free-living Anabaena strains. Appl. Environ. Microbiol 56:1263–1270
    [Google Scholar]
  23. Rai A. N. 1990; Cyanobacteria in symbiosis. 1–7In CRC handbook of symbiotic cyanobacteria CRC Press; Boca Raton, Fla:
    [Google Scholar]
  24. Snedecor G. W. 1966; Statistical methods. , 5. Iowa State University Press; Ames:
    [Google Scholar]
  25. Zimmerman W. J., Lumpkin T. A., Watanabe I. 1989; Classification of Azolla spp., section Azolla . Euphytica 43:223–232
    [Google Scholar]
  26. Zimmerman W. J., Watanabe I., Lumpkin T. A. 1991; The Anabaena-Azolla symbiosis: diversity and relatedness of neotropical host taxa. Plant Soil 137:167–170
    [Google Scholar]
  27. Zimmerman W. J., Watanabe I., Ventura P., Payawal P., Lumpkin T. A. 1991; Aspects of the genetic and botanical status of neotropical Azolla species. New Phytol 119:561–566
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-2-364
Loading
/content/journal/ijsem/10.1099/00207713-45-2-364
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error