1887

Abstract

Strain MLF (T = type strain), a new thermophilic, spore-forming sulfate-reducing bacterium, was characterized and was found to be phenotypically, genotypically, and phylogenetically related to the genus . This organism was isolated from a butyrate enrichment culture that had been inoculated with a mixed compost containing rice hulls and peanut shells. The optimum temperature for growth was 50°C. The G+C content of the DNA was 51.2 mol%. Strain MLF incompletely oxidized pyruvate, butyrate, and butanol to acetate and presumably CO. It used long-chain fatty acids and propanediols. We observed phenotypic and phylogenetic differences between strain MLF and other thermophilic species that also oxidize long-chain fatty acids. On the basis of our results, we propose that strain MLF is a member of a new species, .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-2-218
1995-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/2/ijs-45-2-218.html?itemId=/content/journal/ijsem/10.1099/00207713-45-2-218&mimeType=html&fmt=ahah

References

  1. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate reducing bacteria. J. Microbiol. Methods 4:33–36
    [Google Scholar]
  2. Cord-Ruwisch R., Garcia J. L. 1985; Isolation and characterization of an anaerobic benzoate-degrading spore-forming sulfate-reducing bacterium, Desulfotomaculum sapomandens sp. nov. FEMS Microbiol. Lett. 29:325–330
    [Google Scholar]
  3. Daumas S., Cord-Ruwisch R., Garcia J. L. 1988; Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water. Antonie Leeuwenhoek 54:165–178
    [Google Scholar]
  4. De Soete G. 1983; A least square algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  5. Felsenstein J. 1993; PHYLIP (phylogenetic interference package) version 3.5c. Department of Genetics, University of Washington; Seattle:
    [Google Scholar]
  6. Hanaki K., Matsuo T., Nagase M. 1981; Mechanism of inhibition caused by long-chain fatty acids in anaerobic digestion process. Biotechnol. Bioeng. 23:1591–1610
    [Google Scholar]
  7. Hungate R. E. 1969; A roll tube method for the cultivation of strict anaerobes. Methods Microbiol. 38:117–132
    [Google Scholar]
  8. Imhoff-Stuckle D., Pfennig N. 1983; Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch. Microbiol. 136:194–198
    [Google Scholar]
  9. Jeris J. S., McCarty P. L. 1965; The biochemistry of methane fermentation using 14C tracers. J. Water Pollut. Control Fed. 27:178–192
    [Google Scholar]
  10. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules,. 21–32 Munro H. N. Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  11. Love C. A., Patel B. K. C., Nichols P. D., Stackebrandt E. 1993; Desulfotomaculum australicum sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst. Appl. Microbiol. 16:244–251
    [Google Scholar]
  12. Marmur J. 1961; A procedure for the isolation of DNA from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  13. Meselson M., Stahl F. W. 1985; The replication of DNA in Escherichia coli . Proc. Natl. Acad. SciUSA 44:671–682
    [Google Scholar]
  14. Min H., Zinder H. 1990; Isolation and characterization of a thermophilic sulfate-reducing bacterium, Desulfotomaculum thermoacetoxidans sp. nov. Arch. Microbiol. 153:399–404
    [Google Scholar]
  15. Nazina T. N., Ivanova A. E., Kanchaveli L. P., Rozanova E. P. 1989; A new sporeforming thermophilic methylotrophic sulfate-reducing bacterium, Desulfotomaculum kuznetsovii sp. nov. Microbiology (Engl. Transl. Mikrobiologiya) 57:823–827
    [Google Scholar]
  16. Olsen G. J., Larsen N., Woese C. R. 1991; The Ribosomal RNA Database Project. Nucleic Acids Res. 19:2017–2021
    [Google Scholar]
  17. Pfennig N., Widdel F., Trüper H. G. 1981; The dissimilatory sulfate reducing bacteria,. 926–940 Starr M. P., Trüper H. G., Balows A., Schlegel H. G. The prokaryotes 1 Springer Verlag; Berlin:
    [Google Scholar]
  18. Redburn A. C., Patel B. K. C. 1993; Phylogenetic analysis of Desulfotomaculum thermobenzoicum using polymerase chain reaction-amplified 16S rRNA-specific DNA. FEMS Microbiol. Lett. 113:81–86
    [Google Scholar]
  19. Roy F., Samain E., Dubourguier H. C., Albagnac G. 1986; Syntrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch. Microbiol. 145:142–147
    [Google Scholar]
  20. Stabineer H. 1967; Une nouvelle méthode de mesure précise de la densité des liquides. Monoatsbeste 98:436–438
    [Google Scholar]
  21. Szybalski W. 1968; Use of cesium sulfate for equilibrium density gradient centrifugation. Methods Enzymol. 128:330–360
    [Google Scholar]
  22. Tasaki M., Kamagata Y., Nakamura K., Mikami E. 1991; Isolation and characterization of a thermophilic benzoate-degrading, sulfate-reducing bacterium, Desulfotomaculum thermobenzoicum sp. nov. Arch. Microbiol. 155:348–352
    [Google Scholar]
  23. Van de Peer Y., De Wachter R. 1992; TREECON: a software package for the construction and drawing of evolutionary trees. Comput. Appl. Biosci. 9:177–182
    [Google Scholar]
  24. Weng C. N., Jeris J. S. 1976; Biochemical mechanisms in the methane fermentation of glutamic and oleic acids. Water Res. 10:9–18
    [Google Scholar]
  25. Werkman C. H., Weaver H. J. 1927; Studies in the bacteriology of sulphur stinkage of canned sweet corn. Iowa State Coll. J. Sci. 2:57–67
    [Google Scholar]
  26. Widdel F. 1980; Anaerobacter Abbau von Fettsäuren und Benzosäure durch neu isolierte Arten Sulfat-reduzierender Bakterien. Ph.D. thesis. University of Göttingen; Göttingen, Germany:
    [Google Scholar]
  27. Winker S., Woese C. R. 1991; A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst. Appl. Microbiol. 14:305–310
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-2-218
Loading
/content/journal/ijsem/10.1099/00207713-45-2-218
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error