1887

Abstract

Biochemical, chemotaxonomic, and molecular methods were used to establish the precise taxonomic position of the Centers for Disease Control (CDC) coryneform group 2 bacteria. The results of a comparative 16S rRNA sequence analysis demonstrated that the CDC coryneform group 2 bacteria constitute a distinct species within the genus was found to be the closest genealogical relative of the CDC coryneform group 2 bacteria, although these taxa were readily distinguished from each other and other spp. by using phenotypic criteria. On the basis of our findings we propose the name sp. nov. for the CDC coryneform group 2 bacteria. The type strain is DSM 9152 (CCUG 33419).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-45-1-57
1995-01-01
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/45/1/ijs-45-1-57.html?itemId=/content/journal/ijsem/10.1099/00207713-45-1-57&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1989; Current protocols in molecular biology. John Wiley & Sons; Chichester, United Kingdom:
    [Google Scholar]
  2. Bernard K. A., Bellefeuille M., Ewan E. P. 1991; Cellular fatty acid composition as an adjunct to the identification of asporogenous, aerobic gram-positive rods. J. Clin. Microbiol 29:83–89
    [Google Scholar]
  3. Böddinghaus B., Wolters J., Heikens W., Böttger E. C. 1990; Phyloge-netic analysis and identification of six different serovars of Mycobacterium intracellulare at the molecular level. FEMS Microbiol. Lett 70:197–204
    [Google Scholar]
  4. Brosius J., Palmer M. L., Kennedy P. J., NoIIer H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc. Natl. Acad. SciUSA 75:4801–4805
    [Google Scholar]
  5. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem 87:461–466
    [Google Scholar]
  6. Collins M. D., Cummins C. S. 1986; Genus Cotynebacterium . 1266–1276 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Bergey's manual of systematic bacteriology 2 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  7. Collins M. D., Stubbs S., Hommez J., Devriese L. A. 1993; Molecular taxonomic studies of Actinomyces-like bacteria isolated from purulent lesions in pigs and description of Actlnomyces hyovaginalis sp. nov. Int. J. Syst. Bacteriol 43:471–473
    [Google Scholar]
  8. Coyle M. B., Lipsky B. A. 1990; Coryneform bacteria in infectious diseases: clinical and laboratory aspects. Clin. Microbiol. Rev 3:227–246
    [Google Scholar]
  9. Funke G., Martinetti Lucchini G., Pfyffer G. E., Marchiani M., von Graevenitz A. 1993; Characteristics of CDC group 1 and group 1-like coryneform bacteria isolated from clinical specimens. J. Clin. Microbiol 31:2907–2912
    [Google Scholar]
  10. Holdeman L. V., Cato E. P., Moore W. E. C. 1977; Anaerobe laboratory manual. , 4. Department of Anaerobic Microbiology Virginia Polytechnic Institute and State University; Blacksburg:
    [Google Scholar]
  11. Hutson R. A., Thompson D. E., Collins M. D. 1993; Genetic interrelationships of saccharolytic Clostridium botulinum types B, E and F and related clostridia as revealed by small-subunit rRNA gene sequences. FEMS Microbiol. Lett 108:103–110
    [Google Scholar]
  12. Johnson J. L., Moore L. V. H., Kaneko B., Moore W. E. C. 1990; Actinomyces georgiae sp. nov., Actinomyces gerencseriae sp. nov., designation of two genospecies of Actinomyces naeslundii, and inclusion of A. naeslundii serotypes II and III and Actinomyces viscosus serotype II in A. naeslundii genospecies 2. Int. J. Syst. Bacteriol 40:273–286
    [Google Scholar]
  13. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol 16:110–120
    [Google Scholar]
  14. Krech T., Hollis D. G. 1991; Corynebacterium and related organisms. 277–286 Balows A., Hausler W. J. Jr., Herrmann K. L., Isenberg H. D., Shadomy H. J. Manual of clinical microbiology, 5. American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  15. Ludwig W., Kirchhof G., Weizenegger M., Weiss N. 1992; Phylogenetic evidence for the transfer of Eubacterium suis to the genus Actinomyces as Actinomyces suis comb. nov. Int. J. Syst. Bacteriol 42:161–165
    [Google Scholar]
  16. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance-tempera-ture profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206
    [Google Scholar]
  17. National Committee for Clinical Laboratory Standards 1993; Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 3rd ed., approved standard. Document M7-A3. National Committee for Clinical Laboratory Standards Villanova, Pa:
    [Google Scholar]
  18. National Committee for Clinical Laboratory Standards 1993; Minimum inhibitory concentration (MIC) interpretative standards (ixg/ml) for organisms other than Haemophilus, Neisseria gonorrhoeae, and Streptococcus pneumoniae . Document M7-A3. National Committee for Clinical Laboratory Standards Villanova, Pa:
    [Google Scholar]
  19. Na’was T. E., Hollis D. G., Moss C. W., Weaver R. E. 1987; Comparison of biochemical characteristics of Centers for Disease Control fermentative coryneform groups 1, 2, and A-4. J. Clin. Microbiol 25:1354–1358
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406–125
    [Google Scholar]
  21. Schaal K. P. 1985; Identification of clinically significant actinomycetes and related bacteria using chemical techniques. 359–381 Goodfellow M., Minnikin D. E. Chemical methods in bacterial systematics Academic Press; London:
    [Google Scholar]
  22. Schaal K. P. 1986; Genus Actinomyces . 1383–1418 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Bergey’s manual of systematic bacteriology 2 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  23. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev 36:407–477
    [Google Scholar]
  24. Schleifer K. H., Seidl P. H. 1985; Chemical composition and structure of murein. 201–219 Goodfellow M., Minnikin D. E. Chemical methods in bacterial systematics Academic Press; London:
    [Google Scholar]
  25. Stackebrandt E., Charfreitag O. 1990; Partial 16S rRNA primary structure of five Actinomyces species: phylogenetic implications and development of an Actinomyces israelii-spedûc oligonucleotide probe. J. Gen. Microbiol 136:37–43
    [Google Scholar]
  26. von Graevenitz A., Osterhout G., Dick J. 1991; Grouping of some clinically relevant gram-positive rods by automated fatty acid analysis. APMIS 99:147–154
    [Google Scholar]
  27. von Graevenitz A., Pünter V., Gruner E., Pfyffer G. E., Funke G. 1994; Identification of coryneform and other gram-positive rods with several methods. APMIS 102:381–389
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-45-1-57
Loading
/content/journal/ijsem/10.1099/00207713-45-1-57
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error