1887

Abstract

Abstract

The eubacterial genus belongs to the subgroup of the phylum This genus is usually divided into three biotypes on the basis of vector host and antigenic cross-reactivity characteristics. However, the species does not fit into this classification scheme; this organism has characteristics common to both the spotted fever group and the typhus group biotypes and also exhibits some unique features. Sequences of the 16S rRNA and 23S rRNA genes from (spotted fever group), (typhus group), and were studied to determine the position of in the rickettsial classification scheme. The 23S rRNA gene sequences described in this paper are the first 23S rRNA sequences reported for any member of the The 23S rRNA gene contains substantially more phylogenetic information than is contained in the 16S rRNA sequences, and the 23S rRNA gene sequence has diverged about 1.9 times faster in the three species which we studied. Taken together, the molecular data obtained from the two genes indicate that is not a member of either the spotted fever group or the typhus group; rather, this organism appears to be the product of a divergence which predates the separation of the genus into the spotted fever group and the typhus group. Consequently, different combinations of the ancestral characteristics retained by have been retained in the more derived lineages of the genus. A comparison of the 16S rRNA and 23S rRNA gene sequences of strains with other proteobacterial sequences confirmed that the genus is a unique deeply branching member of the α subgroup of the and that the species form a monophyletic cluster. While divergence of the contemporary members of the genus occurred recently, the unique evolutionary line represented by this genus appears to be very old.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-4-798
1994-10-01
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/4/ijs-44-4-798.html?itemId=/content/journal/ijsem/10.1099/00207713-44-4-798&mimeType=html&fmt=ahah

References

  1. Anacker R. L., Mann R. E., Gonzales C. 1987; Reactivity of monoclonal antibodies to Rickettsia rickettsii with spotted fever group and typhus group rickettsiae. J. Clin. Microbiol. 25:167–171
    [Google Scholar]
  2. Anderson B. E., Dawson J. E., Jones D. C., Wilson K. H. 1991; Ehrlichia chaffeensis, a new species associated with human ehrlichiosis. J. Clin. Microbiol. 29:2838–2842
    [Google Scholar]
  3. Azad A. F., Sacci J. B. Jr., Nelson W. M., Dasch G. A., Schmidtmann E. T., Carl M. 1992; Genetic characterization and transovarial transmission of a typhus-like rickettsia found in cat fleas. Proc. Natl. Acad. Sci. USA 89:43–46
    [Google Scholar]
  4. Brenner D. J., O’Connor S. P., Winkler H. H., Steigenerwalt A. G. 1993; Proposals to unify the unify the genera Bartonella and Rochalimaea, with descriptions of Bartonella quintana comb, nov., Bartonella vinsonii comb, nov., Bartonella henselae comb, nov., and Bartonella elizabethae comb, nov., and to remove the family Bartonellaceae from the order Rickettsiales. Int. J. Syst. Bacteriol. 43:777–786
    [Google Scholar]
  5. Burgdorfer W., Atkins T. R., Priester L. E. 1975; Rocky Mountain spotted fever (tick-borne typhus), its agent, and its tick vectors in the United States. Am. J. Trop. Med. Hyg. 24:866–872
    [Google Scholar]
  6. Cabot E. L., Beckenbach A. T. 1989; Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. Comput. Appl. Biosci. 5:233–234
    [Google Scholar]
  7. Clavero G., Gallardo F. Perez. 1943; Estudio experimental de una cepa apatogenica y immunizante de Rickettsia prowazekii. Rev. Sanid. Hig. Publica 17:1–27
    [Google Scholar]
  8. Dasch G. A., Weiss E. 1991; The genera Rickettsia, Rochalimaea, Ehrlichia, Cowdria and Neorickettsia. 2407–2469 In Balows A., Tr’per H. G., Dworkin M., Harder W., Schleifer K. H. (ed.) The prokaryotes vol. 3 , 2nd ed.. Springer-Verlag; New York:
    [Google Scholar]
  9. Felsenstein J. 1989; PHYLIP-phylogeny inference package (version 3.3). Cladistics 5:164–166
    [Google Scholar]
  10. Fuerst P. A., Poetter K. P. 1991; DNA sequence differentiation in North American spotted fever group species of Rickettsia. 162–169 In Kazar J., Raoult D. (ed.) Rickettsiae and rickettsial diseases Slovak Academy Sciences; Bratislava, Slovakia:
    [Google Scholar]
  11. Gilmore R. D. Jr., Hackstadt T. 1991; DNA polymorphism in the conserved 190 kDa antigen gene repeat region among spotted fever group rickettsiae. Biochim. Biophys. Acta 1097:77–80
    [Google Scholar]
  12. Gray M. W. 1993; Origin and evolution of organelle genomes. Curr. Opin. Genet. Dev. 3:884–890
    [Google Scholar]
  13. Grunstein M., Hogness D. S. 1975; Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc. Natl. Acad. Sci. USA 72:3961–3965
    [Google Scholar]
  14. Gutell R. R. 1993; Collection of small subunit (16S and 16S-like) ribosomal RNA structures. Nucleic Acids Res. 21:3051–3054
    [Google Scholar]
  15. Gutell R. R., Gray M. W., Schnare M. N. 1993; A compilation of large subunit (23S and 23S-like) ribosomal RNA structures. Nucleic Acids Res. 21:3055–3074
    [Google Scholar]
  16. Hanahan D. 1983; Studies on transformation of Escherichia coli. J. Mol. Biol. 166:557–569
    [Google Scholar]
  17. Hoogstraal H. 1978; Biology of ticks. 3–32 In Wilde J. H. K. (ed.) Tick-borne diseases and their vectors Edinburgh University Press; Edinburgh:
    [Google Scholar]
  18. Marchette N. J. 1982; The tickborne rickettsiae of the spotted fever group or tick typhus group. 75–112 In Marchette N. J. (ed.) Ecological relationships and evolution of the rickettsiae vol. 1 CRC Press, Inc.; Boca Raton, Fla:
    [Google Scholar]
  19. Moran N. A., Munson M. A., Baumann P., Ishikawa H. 1993; A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc. R. Soc. Lond. Biol. Sci. 253:167–171
    [Google Scholar]
  20. Ochman H., Wilson A. C. 1987; Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J. Mol. Evol. 26:74–86
    [Google Scholar]
  21. Pang H., Winkler H. H. 1993; Copy number of the 16S rRNA gene in Rickettsia prowazekii. J. Bacteriol. 175:3893–3896
    [Google Scholar]
  22. Philip R. N., Casper E. A., Anacker R. L., Cory J., Hayes S. F., Burgdorfer W., Yunker C. E. 1983; Rickettsia belliϊ”sp. nov.: a tick borne Rickettsia, widely distributed in the United States, that is distinct from the spotted fever and typhus biogroups. Int. J. Syst. Bacteriol. 33:94–106
    [Google Scholar]
  23. Philip R. N., Casper E. A., Burgdorfer W., Gerloff R. K., Hughes L. E., Bell E. J. 1978; Serologic typing of rickettsiae of spotted fever group by microimmunofluorescence. J. Immunol. 121:1961–1968
    [Google Scholar]
  24. Pretzman C., Daugherty N., Poetter K., Ralph D. 1990; The distribution and dynamics of Rickettsia in the tick population of Ohio. Ann. N.Y. Acad. Sci. 590:227–236
    [Google Scholar]
  25. Ralph D., Pretzman C., Daugherty N., Poetter K. 1990; Genetic relationships among the members of the family Rickettsiaceae as shown by DNA restriction fragment polymorphism analysis. Ann. N.Y. Acad. Sci. 590:541–552
    [Google Scholar]
  26. Regnery R. L., Spruill C. L., Plikaytis B. D. 1991; Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J. Bacteriol. 173:1576–1589
    [Google Scholar]
  27. Roux V., Raoult D. 1993; Genotypic identification and phylogenetic analysis of the spotted fever group rickettsiae by pulsed-field gel electrophoresis. J. Bacteriol. 175:4895–4904
    [Google Scholar]
  28. Saikai R. K., Scharf S., Faloona F., Mullis K., Horn G., Erlich H. A., Arnheim N. 1985; Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354
    [Google Scholar]
  29. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467
    [Google Scholar]
  30. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by electrophoresis. J. Mol. Biol. 98:503–517
    [Google Scholar]
  31. Stothard D., Fuerst P. Evolutionary analysis of the spotted fever and typhus groups of Rickettsia using 16S rRNA gene sequences. Syst. Appl. Microbiol. in press
    [Google Scholar]
  32. Swofford D. 1993 PAUP: phylogenetic analysis using parsimony, ver. 3.1.1 Illinois Natural History Survey; Champaign:
    [Google Scholar]
  33. Tamura A., Urakami H., Oshashi N. 1991; A comparative view of Rickettsia tsutsugamushi and other groups of rickettsiae. Eur. J. Epidemiol. 7:259–269
    [Google Scholar]
  34. Weisberg W. G. 1989; Polyphyletic origin of bacterial parasites. 1–16 In Moulder J. W. (ed.) Intracellular parasitism CRC Press; Boca Raton, Fla:
    [Google Scholar]
  35. Weisburg W. G., Dobson M. E., Samuel J. E., Dasch G. A., Mallavia L. P., Baca O., Mandelco L., Sechrest J. E., Weiss E., Woese C. R. 1989; Phylogenetic diversity of the rickettsiae. J. Bacteriol. 171:4202–4206
    [Google Scholar]
  36. Weiss E. 1992; rickettsias. 585–610 In Lederberg J. (ed.) Encyclopedia of microbiology vol. 3 Academic Press; San Diego, Calif:
    [Google Scholar]
  37. Weiss E., Moulder J. 1984; The rickettsias. 687–729 In Krieg N. R., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol. 1 Williams and Wilkins; Baltimore:
    [Google Scholar]
  38. Werren J. H., Hurst G. D. D., Zhang W., Breeuwer J. A. J., Stouthamer R., Majerus M. E. N. 1994; Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata). J. Bacteriol. 176:388–394
    [Google Scholar]
/content/journal/ijsem/10.1099/00207713-44-4-798
Loading
/content/journal/ijsem/10.1099/00207713-44-4-798
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error