1887

Abstract

Gram-negative, mesophilic, obligately anaerobic strains Kysw2 (T = type strain), Kyval, and Kyprop isolated from an anoxic mud sample obtained from the Kysing Fjord south of Århus (Denmark) and strains Gyprop and Gylac isolated from the Guayamas Basin (Gulf of California) all exhibit complete oxidation of a wide range of electron donors (e. g., dicarboxylic acids and amino acids) linked to stoichiometric reduction of elemental sulfur to hydrogen sulfide. A comparative 16S ribosomal DNA sequence analysis revealed that these five strains, together with a previously described isolate (strain Gö11), constitute a coherent cluster of descent. This cluster belongs phylogenetically to a branch of the delta subclass of the and is characterized by members of the genera and . Within the cluster strains Kysw2 and Kyval, strains Gyprop and Kyprop, and strains Gylac and Gö11 have identical 16S ribosomal DNA sequences. The levels of DNA-DNA relatedness were 89% between strains Kysw2 and Kyval, 98% between strains Gyprop and Kyprop, and 73% between strains Gylac and Gö11. The levels of DNA-DNA relatedness between members of the three DNA relatedness groups were less than 30%. On the basis of genomic data and phenotypic characteristics, a new genus, , is described; this new genus includes three new species, for which the names , and are proposed. The type species of the genus is . Strains Kysw2 (= DSM 7343), Gyprop (= DSM 7345), and Gylac (= DSM 8270) are the type strains of , and , respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-4-753
1994-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/4/ijs-44-4-753.html?itemId=/content/journal/ijsem/10.1099/00207713-44-4-753&mimeType=html&fmt=ahah

References

  1. Balashova V. V. 1985; The use of molecular sulfur as an agent oxidizing hydrogen by the facultative anaerobic Pseudomonas strain. Mikrobiologiya 54:324–326
    [Google Scholar]
  2. Biebl H., Pfennig N. 1977; Growth of sulfate-reducing bacteria with sulfur as electron acceptor. Arch. Microbiol. 112:115–117
    [Google Scholar]
  3. Bonch-Osmolovskaya E. A., Sokolova T. G., Kostrikina N. A., Zavarzin G. A. 1990; Desulfurella acetivorans gen. nov. and sp. nov., a new thermophilic sulfur-reducing eubacterium. Arch. Microbiol. 153:151–155
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem. 81:461–466
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  6. De Rijk P., Neefs J.-M., Van de Peer Y., De Wachter R. 1992; Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res. 20:2075–2089
    [Google Scholar]
  7. Evers S., Weizenegger M., Ludwig W., Schink B., Schleifer K.-H. 1993; The phylogenetic positions of Pelobacter acetylenicus and Pelobacter propionicus. Syst. Appl. Microbiol. 16:216–218
    [Google Scholar]
  8. Felsenstein J. 1989; PHYLIP—phytogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  9. Finster K., Bak F. 1993; Complete oxidation of propionate, valerate, succinate, and other organic compounds by newly isolated types of marine, anaerobic, mesophilic, gram-negative, sulfur-reducing eubacteria. Appl. Environ. Microbiol. 59:1452–1460
    [Google Scholar]
  10. Finster K., Bak F., Pfennig N. 1994; Desulfuromonas acetexigens sp. nov., a dissimilatory sulfur-reducing eubacterium from anoxic freshwater sediments. Arch. Microbiol. 161:328–332
    [Google Scholar]
  11. Fowler V. J., Widdel F., Pfennig N., Woese C. R., Stackebrandt E. 1986; Phylogenetic relationships of sulfate- and sulfur-reducing eubacteria. Syst. Appl. Microbiol. 8:32–41
    [Google Scholar]
  12. Gillis M., De Ley J., De Cleene M. 1970; The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur. J. Biochem. 12:143–153
    [Google Scholar]
  13. Goodfellow M., O’Donnell A. G. 1993; Roots of bacterial systematics. 3–56 In Goodfellow M., O’Donnell A. G. (ed.) Handbook of new bacterial systematics Academic Press; New York:
    [Google Scholar]
  14. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol. 4:184–192
    [Google Scholar]
  15. Jahnke K.-D. 1992; BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J. Microbiol. Methods 15:61–73
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. 21–132 In Munro H. N. (ed.) Mammalian protein metabolism vol. 3 Academic Press, Inc.; New York:
    [Google Scholar]
  17. Lane D. J. 1991; 16S/23S rDNA sequencing. 115–176 In Stackebrandt E., Goodfellow M. (ed.) Nucleic acid techniques in bacterial systematics Wiley & Sons; Chichester, England:
    [Google Scholar]
  18. Miroshnichenko M. L., Gongadze G. A., Lysenko A. M., Bonch-Osmolovskaya E. A. 1994; Desulfurella multipotens sp. nov., a new sulfur-respiring thermophilic eubacterium from Raoul Island (Kermadec archipelago, New Zealand). Arch. Microbiol. 161:88–93
    [Google Scholar]
  19. Myers C. R., Nealson K. H. 1988; Bacterial manganese reduction and growth with manganese oxide as sole electron acceptor. Science 240:1319–1321
    [Google Scholar]
  20. Olsen G. J., Overbeek R., Larsen N., Marsh T. L., McCaughey M. J., Maciukenas M. A., Kuan W. M., Macke T. J., Woese C. R. 1992; The ribosomal data base project. Nucleic Acids Res. 20: (Suppl.) 2199–2200
    [Google Scholar]
  21. Pfennig N., Biebl H. 1976; Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch. Microbiol. 110:3–12
    [Google Scholar]
  22. Pfennig N., Biebl H. 1981; The dissimilatory sulfur-reducing bacteria. 941–947 In Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. (ed.) The prokaryotes vol. 1 Springer-Verlag; Berlin:
    [Google Scholar]
  23. Rainey F. A., Toalster R., Stackebrandt E. 1993; Desulfurella acetivorans, a thermophilic, acetate-oxidizing and sulfur-reducing organism, represents a distinct lineage within the Proteobacteria. Syst. Appl. Microbiol. 16:373–379
    [Google Scholar]
  24. Schink B. 1984; Fermentation of 2,3-butandiol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus sp. nov., and evidence for propionate formation from C2 compounds. Arch. Microbiol. 137:33–41
    [Google Scholar]
  25. Schink B. 1985; Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov. Arch. Microbiol. 142:295–301
    [Google Scholar]
  26. Schink B., Pfennig N. 1982; Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov., sp. nov., a strictly anaerobic, non-sporeforming bacterium. Arch. Microbiol. 133:195–201
    [Google Scholar]
  27. Schumacher W., Kroneck P. M. H., Pfennig N. 1992; Comparative systematic study on “Spirillum” 5175, Campylobacter and Wolinella species. Description of “Spirillum” 5175 as Sulfurospirillum deleyianum gen. nov., spec. nov. Arch. Microbiol. 158:287–293
    [Google Scholar]
  28. Stackebrandt E., Wehrmeyer U., Schink B. 1989; The phylogenetic status of Pelobacter acidigallici, Pelobacter venetianus, and Pelobacter carbinolicus. Syst. Appl. Microbiol. 11:257–260
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandier O., Kriehevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Trüper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37:463–464
    [Google Scholar]
  30. Widdel F. 1988; Microbiology and ecology of sulfate-and sulfur-reducing bacteria. 469–585 In Zehnder A. J. B. (ed.) Biology of anaerobic microorganisms John Wiley & Sons, Inc.; New York:
    [Google Scholar]
  31. Widdel F., Pfennig N. 1992; The genus Desulfuromonas and other Gram-negative sulfur-reducing eubacteria. 3379–3389 In Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. (ed.) The prokaryotes, 2nd ed.. vol. 4 Springer; New York:
    [Google Scholar]
  32. Wisotzkey J. D., Jurtshuk P. Jr., Fox G. E. 1990; PCR amplification of 16S rDNA from lyophilized cell cultures facilitates studies in molecular systematics. Curr. Microbiol. 21:325–327
    [Google Scholar]
  33. Wolfe R. S., Pfennig N. 1977; Reduction of sulfur by Spirillum 5175 and syntrophism with Chlorobium. Appl. Environ. Microbiol. 33:427–433
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-4-753
Loading
/content/journal/ijsem/10.1099/00207713-44-4-753
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error