1887

Abstract

Abstract

A total of 80 bacterial strains isolated from different and species growing in various sites in Senegal (West Africa) were compared with 35 reference strains of , , , and species and with 33 representative strains of the different groups of Brazilian isolates described on the basis of the results of a numerical analysis of the whole-cell protein patterns obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Fifty-two strains could be placed in three protein electrophoretic clusters, two of which were different from the clusters containing various reference or representative strains, while 30 other strains could not be placed in any group. The strains belonging to the three clusters were studied by determining their nodulation host ranges and their morphological, physiological, and auxanographic characteristics. Representative strains of the three clusters were also genotypically characterized by determining their DNA base compositions, by performing DNA-DNA and DNA-rRNA hybridization experiments, and by determining their 16S rRNA gene sequences. Our results showed that two of the clusters identified on the basis of SDS-PAGE data are genotypically and phenotypically distinct groups that belong on the rRNA branch. The third cluster is localized on the rRNA branch in the vicinity of and contains strains isolated in Africa, in Brazil, and in New Zealand from different leguminous species. On the basis of the results of the present study, we propose to emend the genus and to reclassify as comb. nov. In addition, two new species, and are proposed for isolates from Senegal.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-4-715
1994-10-01
2024-03-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/4/ijs-44-4-715.html?itemId=/content/journal/ijsem/10.1099/00207713-44-4-715&mimeType=html&fmt=ahah

References

  1. Badji S. Unpublished data
    [Google Scholar]
  2. Bouzar H. 1994; Request for a Judicial Opinion concerning the type species of Agrobacterium. Int. J. Syst. Bacteriol. 44:373–374
    [Google Scholar]
  3. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75:4801–4805
    [Google Scholar]
  4. Chen W. X., Li G. S., Qi Y. L., Wang E. T., Yuan H. L., Li J. L. 1991; Rhizobium huakuii sp. nov. isolated from the root nodules of Astralagus sinicus. Int. J. Syst. Bacteriol. 41:275–280
    [Google Scholar]
  5. Chen W. X., Yan G. H., Li J. L. 1988; Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int. J. Syst. Bacteriol. 38:392–397
    [Google Scholar]
  6. Crow V. L., Jarvis B. D. H., Greenwood R. M. 1981; Deoxyribonucleic acid homologies among acid-producing strains of Rhizobium. Int. J. Syst. Bacteriol. 31:152–172
    [Google Scholar]
  7. Dangeard P. A. 1926; Recherches sur les tubercles radicaux des Légumineuses. Botaniste 13:1–275
    [Google Scholar]
  8. De Ley J. 1970; Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101:737–754
    [Google Scholar]
  9. De Ley J. 1991; The proteobacteria: ribosomal RNA cistron similarities and bacterial taxonomy. 2109–2140 In Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. (ed.) The prokaryotes, 2nd. ed.. Springer-Verlag; New York:
    [Google Scholar]
  10. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12:133–142
    [Google Scholar]
  11. De Ley J., De Smedt J. 1975; Improvements of the membrane filter method for DNA:rRNA hybridization. Antonie van Leeu-wenhoek J. Microbiol. Serol. 41:287–307
    [Google Scholar]
  12. De Ley J., Van Muylem J. 1963; Some applications of deoxyribonucleic acid base composition in bacterial taxonomy. Antonie van Leeuwenhoek J. Microbiol. Serol. 29:344–358
    [Google Scholar]
  13. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387–395
    [Google Scholar]
  14. Dreyfus B., Garcia J. L., Gillis M. 1988; Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int. J. Syst. Bacteriol. 38:89–98
    [Google Scholar]
  15. Dreyfus B. L., Dommergues Y. 1981; Nodulation of Acacia species by fast- and slow-growing tropical strains of Rhizobium. Appl. Environ. Microbiol. 41:97–99
    [Google Scholar]
  16. Felsenstein J. 1982; Numerical methods for inferring evolutionary trees. Q. Rev. Biol. 57:379–404
    [Google Scholar]
  17. Graham P. H., Sadowsky M. J., Keyser H. H., Barnet Y. M., Bradley R. S., Cooper J. E., De Ley J., Jarvis B. D. W., Roslycky E. B., Strijdom B. W. J., Young P. W. 1991; Proposed minimal standards for the description of new genera and species of root-and stem-nodulating bacteria. Int. J. Syst. Bacteriol. 41:582–587
    [Google Scholar]
  18. Jarvis B. D. W., Downer H. L. J., Young P. W. 1992; Phylogeny of fast-growing soybean-nodulating rhizobia supports synonymy of Sinorhizobium and Rhizobium and assignment to Rhizobium fredii. Int. J. Syst. Bacteriol. 42:93–96
    [Google Scholar]
  19. Jarvis B. D. W., Gillis M., De Ley J. 1986; Intra- and intergeneric similarities between the ribosomal ribonucleic acid cistrons of Rhizobium and Bradyrhizobium species and some related bacteria. Int. J. Syst. Bacteriol. 36:129–138
    [Google Scholar]
  20. Jordan D. C. 1984; Rhizobiaceae Conn 1938, 321AL. 234–256 In Krieg N. R., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol. 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  21. Kersters K., De Ley J. 1984; Genus III. Agrobacterium Conn 1942. 244–254 In Krieg N. R., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol. 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  22. Kersters K., Hinz K. H., Hertle A., Segers P., Lievens A., Siegmann O., De Ley J. 1984; Bordetella avium sp. nov., isolated from the respiratory tracts of turkeys and other birds. Int. J. Syst. Bacteriol. 34:56–70
    [Google Scholar]
  23. Kiredjian M., Holmes B., Kersters K., Guilvout J., De Ley J. 1986; Alcaligenes piechaudii, a new species from human clinical specimens and the environment. Int. J. Syst. Bacteriol. 36:282–287
    [Google Scholar]
  24. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685
    [Google Scholar]
  25. Lickfield K. G. 1976; Transmission electron microscopy of bacteria. Methods Microbiol. 9:130
    [Google Scholar]
  26. Lindström K. 1989; Rhizobium galegae, a new species of legume root nodule bacteria. Int. J. Syst. Bacteriol. 39:365–367
    [Google Scholar]
  27. Lortet J. Unpublished data
    [Google Scholar]
  28. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  29. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  30. Martinez-Romero E., Segovia L., Mercante F. M., Franco A. A., Graham P., Pardo M. A. 1991; Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int. J. Syst. Bacteriol. 41:417–426
    [Google Scholar]
  31. Moreira F., Gillis M., Pot B., Kersters K., Franco A. A. 1993; Characterization of rhizobia isolated from different divergence groups of tropical Leguminosae by comparative Polyacrylamide gel electrophoresis of their total proteins. Syst. Appl. Microbiol. 16:135–146
    [Google Scholar]
  32. Ndoye I. Unpublished data
    [Google Scholar]
  33. Pot B., Gillis M., Hoste B., Van De Velde A., Bekaert F., Kersters K., De Ley J. 1989; Intra- and intergeneric relationships of the genus Oceanospirillum. Int. J. Syst. Bacteriol. 39:23–34
    [Google Scholar]
  34. Pot B., Vandamme P., Kersters K. 1994; Analysis of electrophoretic whole organism protein fingerprints. 493–521 In Goodfellow M., O’Donnell T. (ed.) Chemical methods in prokaryotic systematics John Wiley & Sons; Chichester, United Kingdom:
    [Google Scholar]
  35. Rinaudo G., Fernandez M. P., Effosse A., Picard B., Bardin R. 1993; Enzyme polymorphism of Azorhizobium strains and other stem and root-nodulating bacteria isolated from Sesbania rostrata. Res. Microbiol. 154:55–67
    [Google Scholar]
  36. Rinaudo G., Orenga S., Fernandez M., Meugnier H., Bardin R. 1991; DNA homologies among members of the genus Azorhizobium and other stem- and root-nodulating bacteria isolated from the tropical legume Sesbania rostrata. Int. J. Syst. Bacteriol. 41:114–120
    [Google Scholar]
  37. Sawada H., Ieki H., Oyaizu H., Matsumoto S. 1993; Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. Int. J. Syst. Bacteriol. 43:694–702
    [Google Scholar]
  38. Scholia M. H., Elkan G. H. 1984; Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int. J. Syst. Bacteriol. 34:484–486
    [Google Scholar]
  39. Segovia L., Young J. P. W., Martinez-Romero E. 1993; Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int. J. Syst. Bacteriol. 43:374–377
    [Google Scholar]
  40. Sneath P. H. A., Sokal R. R. 1973; Numerical taxonomy. The principles and practice of numerical classification W. H. Freeman and Co.; San Francisco:
    [Google Scholar]
  41. Vauterin L., Vauterin P. 1992; Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur. Microbiol. 1:37–41
    [Google Scholar]
  42. Vincent J. M. 1970; A manual for the practical study of root-nodule bacteria. International Biological Programme Handbook no. 1573–97 Blackwell Scientific Publications, Ltd.; Oxford:
    [Google Scholar]
  43. Willems A., Collins M. D. 1992; Evidence for a close genealogical relationship between Afipia, the causal organism of cat scratch disease, Bradyrhizobium japonicum and Blastobacter denitrificans. FEMS Microbiol. Lett. 96:241–246
    [Google Scholar]
  44. Willems A., Collins M. D. 1993; Phylogenetic analysis of rhizobia and agrobacteria based on 16S ribosomal DNA sequences. Int. J. Syst. Bacteriol. 43:305–313
    [Google Scholar]
  45. Wishart D. 1978; Clustan users manual. , 3rd ed.. Program Library Unit Edinburgh University; Edinburgh, Scotland:
    [Google Scholar]
  46. Yanagi M., Yamasoto K. 1993; Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol. Lett. 107:115–120
    [Google Scholar]
  47. Young J. P. W. 1991; Phylogenetic classification of nitrogen-fixing organisms. 43–86 In Stacey G., Burris R. H., Evans H. J. (ed.) Biological nitrogen fixation Chapman & Hall; New York:
    [Google Scholar]
  48. Young J. P. W., Downer H. L., Eardly B. D. 1991; Phylogeny of the phototrophic Rhizobium strain BTAil by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J. Bacteriol. 173:2271–2277
    [Google Scholar]
  49. Zhang X., Harper R., Karsisto M., Lindström K. 1991; Diversity of Rhizobium bacteria isolated from root nodules of leguminous trees. Int. J. Syst. Bacteriol. 41:104–113
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-4-715
Loading
/content/journal/ijsem/10.1099/00207713-44-4-715
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error