Cellular Fatty Acid Composition as a Chemotaxonomic Marker for the Differentiation of Phenospecies and Hybridization Groups in the Genus Free

Abstract

Abstract

Ninety genotypically characterized strains, including members of all 14 currently established genospecies, were studied by performing gas-liquid chromatographic analysis of their cellular fatty acid methyl esters (FAMEs). A total of 44 fatty acids and two alcohols were found in members of the genus All 90 strains contained 12:0, 13:0 iso, 14:0, 15:0 iso 30H, 16:0, 16:1 ω7, 17:0 iso, iso 17:1 ω9, summed feature 3 (16:1 iso I and/or 14:0 30H), and summed feature 7 (18:1 ω7, 18:1 ω, and/or 18:1 ω12), whereas all but one strain (99%) also contained 15:0 iso. Although the FAME profiles were very similar, minor quantitative variations could be used to differentiate phenospecies and/or hybridization groups. A cluster analysis of the mean data revealed five FAME clusters, which were compared with phenotypic and genotypic groups identified in the genus Hybridization groups that constituted the complex, the complex, and the complex were basically grouped into distinct FAME clusters. The taxonomic positions of hybridization groups 7 and 11 in these clusters, however, remained unclear. All of our results were highly reproducible. A new database of FAME fingerprints was generated, and this database can be used for rapid identification of unknown aeromonads. Using a large set of well-characterized aeromonads, we demonstrated for the first time that gas-liquid chromatographic FAME analysis can be used to differentiate the majority of the phenospecies and/or hybridization groups in the genus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-4-651
1994-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/4/ijs-44-4-651.html?itemId=/content/journal/ijsem/10.1099/00207713-44-4-651&mimeType=html&fmt=ahah

References

  1. Altwegg M. 1990 Taxonomy and epidemiology ofAeromonas spp.: the value of new typing methods Habilitationsschrift, Universität Zürich; Zurich:
    [Google Scholar]
  2. Altwegg M., Altwegg-Bissig R., Demarta A., Peduzzi R., Reeves M. W., Swaminathan B. 1988; Comparison of four typing methods for Aeromonas species. J. Diarrhoeal Dis. Res. 6:88–94
    [Google Scholar]
  3. Altwegg M., Reeves M. W., Altwegg-Bissig R., Brenner D. J. 1991; Multilocus enzyme analysis of the genus Aeromonas and its use for species identification. Zentralbl. Bakteriol. 275:28–45
    [Google Scholar]
  4. Altwegg M., Steigerwalt A. G., Altwegg-Bissig R., Lüthy-Hottenstein J., Brenner D. J. 1990; Biochemical identification ofAeromonas genospecies isolated from humans. J. Clin. Microbiol. 28:258–264
    [Google Scholar]
  5. Canonica F. P., Pisano M. A. 1985; Identification of hydroxy acids in Aeromonas hydrophila, Aeromonas sobria, andAeromonas caviae. J. Clin. Microbiol. 22:1061–1062
    [Google Scholar]
  6. Canonica F. P., Pisano M. A. 1988; Gas-liquid chromatographic analysis of fatty acid methyl esters of Aeromonas hydrophila, Aeromonas sobria, and Aeromonas caviae. J. Clin. Microbiol. 26:681–685
    [Google Scholar]
  7. Carnahan A. M., Chakraborty T., Fanning G. R., Verma D., Ali A., Janda J. M., Joseph S. W. 1991; Aeromonas trota sp. nov., an ampicillin-susceptible species isolated from clinical specimens. J. Clin. Microbiol. 29:1206–1210
    [Google Scholar]
  8. Carnahan A. M., Fanning G. R., Joseph S. W. 1991; Aeromonas jandaei (formerly genospecies DNA group 9 A. sobria), a new sucrose-negative species isolated from clinical specimens. J. Clin. Microbiol. 29:560–564
    [Google Scholar]
  9. Carnahan A. M., Joseph S. W. 1993; Systematic assessment of geographically and clinically diverse aeromonads. Syst. Appl. Microbiol. 16:72–84
    [Google Scholar]
  10. Collins M. D., Martinez-Murcia A. J., Cai J. 1993; Aeromonas enteropelogenes and Aeromonas ichthiosmia are identical to Aeromonas trota and Aeromonas veronii, respectively, as revealed by small-subunit rRNA sequence analysis. Int. J. Syst. Bacteriol. 43:855–856
    [Google Scholar]
  11. Colwell R. R., McDonell M. T., De Ley J. 1986; Proposal to recognize the family Aeromonadaceae fam. nov. Int. J. Syst. Bacteriol. 36:473–477
    [Google Scholar]
  12. Hansen W., Freney J., Labbe M., Renaud F., Yourassowsky E., Fleurette J. 1991; Gas-liquid chromatographic analysis of cellular fatty acid methyl esters in Aeromonas species. Zentralbl. Bakteriol. 275:1–10
    [Google Scholar]
  13. Havelaar A. H., Schets F. M., van Silfhout A., Jansen W. H., Wieten G., van der Kooij D. 1992; Typing of Aeromonas strains from patients with diarrhoea and from drinking water. J. Appl. Bacteriol. 72:435–444
    [Google Scholar]
  14. Hickman-Brenner F. W., Fanning G. R., Arduino M. J., Brenner D. J., Farmer J. J. III 1988; Aeromonas schubertii, a new mannitol-negative species found in human clinical specimens. J. Clin. Microbiol. 26:1561–1564
    [Google Scholar]
  15. Hickman-Brenner F. W., MacDonald K. L., Steigerwalt A. G., Fanning G. R., Brenner D. J., Farmer J. J. III 1987; Aeromonas veronii, a new ornithine decarboxylase-positive species that may cause diarrhea. J. Clin. Microbiol. 25:900–906
    [Google Scholar]
  16. Huys G., Coopman R., Vancanneyt M., Kersters I., Verstraete W., Kersters K., Janssen P. 1993; High resolution differentiation of aeromonads. Med. Microbiol. Lett. 2:248–255
    [Google Scholar]
  17. Janda M. J. 1991; Recent advances in the study of the taxonomy, pathogenicity, and infectious syndromes associated with the genus Aeromonas. Clin. Microbiol. Rev. 4:397–410
    [Google Scholar]
  18. Jantzen E., Sonesson A., Tangen T., Eng J. 1993; Hydroxyfatty acid profiles of Legionella species: diagnostic usefulness assessed by principal-component analysis. J. Clin. Microbiol. 31:1413–1419
    [Google Scholar]
  19. Kämpfer P., Altwegg M. 1992; Numerical classification and identification of Aeromonas genospecies. J. Appl. Bacteriol. 72:341–351
    [Google Scholar]
  20. Kuijper E. J., Steigerwalt A. G., Schoenmakers B. S. C. I. M., Peeters M. F., Zanen H. C., Brenner D. J. 1989; Phenotypic characterization and DNA relatedness in human fecal isolates of Aeromonas spp. J. Clin. Microbiol. 27:132–138
    [Google Scholar]
  21. Lambert M. A., Hickman-Brenner F. W., Farmer J. J. III, Moss W. 1983; Differentiation of Vibrionaceae species by their cellular fatty acid composition. Int. J. Syst. Bacteriol. 33:777–792
    [Google Scholar]
  22. Martinez-Murcia A. J., Esteve C., Garay E., Collins M. D. 1992; Aeromonas allosaccharophila sp. nov., a new mesophilic member of the genus Aeromonas. FEMS Microbiol Lett. 91:199–206
    [Google Scholar]
  23. Osterhout G. J., Shull V. H., Dick J. D. 1991; Identification of clinical isolates of gram-negative nonfermentative bacteria by an automated cellular fatty acid identification system. J. Clin. Microbiol. 29:1822–1830
    [Google Scholar]
  24. Picard B., Goullet P. 1985; Comparative electrophoretic profiles of esterases, and of glutamate, lactate and malate dehydrogenases, from Aeromonas hydrophila, A. caviae and A. sobria. J. Gen. Microbiol. 131:3385–3391
    [Google Scholar]
  25. Popoff M. 1984; Genus III. Aeromonas Kluyver and van Niel 1936. 545–548 In Krieg N. R., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol. 1 Williams & Wilkins; Baltimore:
    [Google Scholar]
  26. Popoff M. Y., Coynault C., Kiredjian M., Lemelin M. 1981; Polynucleotide sequence relatedness among motile Aeromonas species. Curr. Microbiol. 5:109–114
    [Google Scholar]
  27. Schubert R. H. W., Hegazi M. 1988; Aeromonas eucrenophila species nova, Aeromonas caviae, a later and illegitimate synonym ofAeromonas punctata. Zentralbl. Bakteriol. Mikrobiol. Hyg. Abt. 1 Orig. Reihe A 268:34–39
    [Google Scholar]
  28. Schubert R. H. W., Hegazi M., Wahlig W. 1990; Aeromonas enteropelogenes species nova. Hyg. Med. 15:471–472
    [Google Scholar]
  29. Schubert R. H. W., Hegazi M., Wahlig W. 1990; Aeromonas ichthiosmia species nova. Hyg. Med. 15:477–479
    [Google Scholar]
  30. Stead D. E. 1989; Grouping of Xanthomonas campestris pathovars of cereals and grasses by fatty acid profiling. EPPO (Eur. Mediterr. Plant Prot. Organ.) Bull. 19:57–68
    [Google Scholar]
  31. Stead D. E. 1992; Grouping of plant-pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles. Int. J. Syst. Bacteriol. 42:281–295
    [Google Scholar]
  32. Stephenson J. R., Millership S. E., Tabaqchali S. 1987; Typing ofAeromonas species by polyacrylamide-gel electrophoresis of radiolabelled cell proteins. J. Med. Microbiol. 24:113–118
    [Google Scholar]
  33. Tonolla M., Demarta A., Peduzzi R. 1991; Multilocus genetic relationships between clinical and environmental Aeromonas strains. FEMS Microbiol. Lett. 81:193–200
    [Google Scholar]
  34. Vandamme P., Gillis M., Vancanneyt M., Hoste B., Kersters K., Falsen E. 1993; Moraxella lincolnii sp. nov., isolated from the human respiratory tract, and reevaluation of the taxonomic position of Moraxella osloensis. Int. J. Syst. Bacteriol. 43:474–481
    [Google Scholar]
  35. Vandamme P., Vancanneyt M., Pot B., Mels L., Hoste B., Dewettinck D., Vlaes L., Van den Borre C., Higgins R., Hommez J., Kersters K., Butzler J.-P., Goossens H. 1992; Polyphasic taxonomic study of the emended genus Arcobacter, with Arcobacter butzleri comb. nov. and Arcobacter skirrowii sp. nov., an aerotolerant bacterium isolated from veterinary specimens. Int. J. Syst. Bacteriol. 42:344–356
    [Google Scholar]
  36. Vauterin L., Yang P., Hoste B., Vancanneyt M., Civerolo E. L., Swings J., Kersters K. 1991; Differentiation of Xanthomonas campestris pv. citri strains by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins, fatty acid analysis, and DNA-DNA hybridization. Int. J. Syst. Bacteriol. 41:535–542
    [Google Scholar]
  37. von Graevenitz A., Altwegg M. 1991; Aeromonas and Plesiomonas. 396–401 In Balows A., Hausier W. J. Jr., Herrmann K. L., Isenberg H. D., Shadomy H. J. (ed.) Manual of clinical microbiology, 5th ed.. American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  38. Yang P., Vauterin L., Vancanneyt M., Swings J., Kersters K. 1993; Application of fatty acid methyl esters for the taxonomic analysis of the genus Xanthomonas. Syst. Appl. Microbiol. 16:47–71
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-4-651
Loading
/content/journal/ijsem/10.1099/00207713-44-4-651
Loading

Data & Media loading...

Most cited Most Cited RSS feed