Isolation and Characterization of gen. nov., sp. nov., an Anaerobic Bacterium Which Reductively Dechlorinates Chlorophenolic Compounds Free

Abstract

Abstract

An organism that is able to reductively -dechlorinate 2,4-dichlorophenol and 3-chloro-4-hydroxyphenylacetate (3-C1-4-OHPA) was isolated from a methanogenic lake sediment. This organism, an anaerobic, motile, Gram-type-positive, rod-shaped bacterium, grew in the presence of 0.1% yeast extract when pyruvate, lactate, formate, or hydrogen was used as the electron donor for reductive dehalogenation of 3-C1-4-OHPA. Sulfite, thiosulfate, and sulfur were reduced to sulfide, nitrate was reduced to nitrite, and fumarate was reduced to succinate. Dissimilatory reduction of sulfate could not be demonstrated, and no adenylylsulfate reductase was detected with an immunoassay. The organism fermented two pyruvate molecules to one lactate molecule, one acetate molecule, and one carbon dioxide molecule. The pH and temperature optima for both growth and dechlorination of 3-C1-4-OHPA were 7.5 and 38°C, respectively. The doubling time under these conditions was approximately 3.5 h. On the basis of the results of a 16S rRNA analysis and the inability of the organism to use sulfate as an electron acceptor, strain JW/IU-DC1 is described as the type strain of the new taxon gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-4-612
1994-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/4/ijs-44-4-612.html?itemId=/content/journal/ijsem/10.1099/00207713-44-4-612&mimeType=html&fmt=ahah

References

  1. Abdollahi H., Wimpenny J. W. T. 1990; Effects of oxygen on the growth of Desulfovibrio desulfuricans. J. Gen. Microbiol. 136:1025–1030
    [Google Scholar]
  2. Ausubel F. M. 1989 Current protocols in molecular biology, p. 2.4.1.–2.4.5 Wiley Interscience; New York:
    [Google Scholar]
  3. Beuscher N., Mayer F., Gottschalk G. 1974; Citrate lyase from Rhodopseudomonasgelatinosa: purification, electron microscopy and subunit structure. Arch. Microbiol. 100:307–328
    [Google Scholar]
  4. Biggin M. D., Gibson T. J., Hing G. F. 1983; Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc. Natl. Acad. Sci. USA 80:3963–3965
    [Google Scholar]
  5. Campbell L. L., Postgate J. R. 1965; Classification of the spore-forming sulfate-reducing bacteria. Bacteriol. Rev. 29:359–363
    [Google Scholar]
  6. Campbell L. L., Singleton R. Jr. 1986; Genus IV. Desulfotomaculum. 1200–1202 Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Bergey’s manual of systematic bacteriology 2 Williams & Wilkins; Baltimore:
    [Google Scholar]
  7. Dalton D. D. 1990 The enrichment and characterization of a microbial community derived from freshwater sediments which transforms 2,4-dichlorophenol under anaerobic conditions. M.S. thesis University of Georgia; Athens:
    [Google Scholar]
  8. Dannenberg S., Kroder M., Dilling W., Cypionka H. 1992; Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. Arch. Microbiol. 158:93–99
    [Google Scholar]
  9. De Soete G. 1983; A least square algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  10. DeWeerd K. A., Mandelco L., Tanner R. S., Woese C. R., Suflita J. M. 1991; Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch. Microbiol. 154:23–30
    [Google Scholar]
  11. Dilling W., Cypionka H. 1990; Aerobic respiration in sulfatereducing bacteria. FEMS Microbiol. Lett. 71:123–128
    [Google Scholar]
  12. Doetsch R. N. 1981; Determinative methods of light microscopy. 21–33 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Manual of methods for general microbiology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  13. Frasca J. M., Parks V. R. 1965; A routine technique for double-staining ultrathin sections using uranyl and lead salts. J. Cell Biol. 25:157–161
    [Google Scholar]
  14. Hanson R. S., Philips J. A. 1981; Chemical composition. 328–364 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Manual of methods for general microbiology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  15. Holt J. G., Krieg N. R., Sneath P. H. A., Staley J. T., Williams S. T. 1994341 Bergey’s manual of determinative bacteriology Williams & Wilkins; Baltimore:
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. 21–132 Munro H. N. Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  17. Kellenberger E., Ryter A., Sechaud J. 1958; Electron microscope study of DNA-containing plasma. II. Vegetative and mature phage DNA as compared with normal bacterial nucleosides in different physiological states. J. Biophys. Biochem. Cytol. 4:671–678
    [Google Scholar]
  18. Klemps R., Cypionka H., Widdel F., Pfennig N. 1985; Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species. Arch. Microbiol. 143:203–208
    [Google Scholar]
  19. Kohring G.-W., Rogers J. E., Wiegel J. 1989; Anaerobic biodegradation of 2,4-dichlorophenol in freshwater lake sediments at different temperatures. Appl. Environ. Microbiol. 55:348–353
    [Google Scholar]
  20. Lane D. J., Pace B., Olsen G. J., Stahl D. A. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82:6955–6959
    [Google Scholar]
  21. Ljungdahl L. G., Wiegel J. 1986; Anaerobic fermentations. 84–96 Demain A. L., Solomon N. A. Manual of industrial microbiology and biotechnology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  22. Madsen T., Aamad J. 1992; Isolation and characterization of an anaerobic chlorophenol-transforming bacterium. Appl. Environ. Microbiol. 58:2874–2878
    [Google Scholar]
  23. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159–167
    [Google Scholar]
  25. Mohn W. W., Tiedje J. M. 1992; Microbial reductive dehalogenation. Microbiol. Rev. 56:482–507
    [Google Scholar]
  26. Olsen G. J., Overbeek R., Larsen N., Marsh T. L., McCaughey M. J., Maciukenas M. A., Kuan W. M., Macke T. J., Woese C. R. 1992; The ribosomal database project. Nucleic Acids Res. 20:Suppl.2199–2200
    [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467
    [Google Scholar]
  28. Shelton D. R., Tiedje J. M. 1984; Isolation and characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl. Environ. Microbiol. 48:840–848
    [Google Scholar]
  29. Spurr A. R. 1969; A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26:31–43
    [Google Scholar]
  30. Valentine R. C., Shapiro B. M., Stadtman E. R. 1968; Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from E. coli. Biochemistry 7:2143–2152
    [Google Scholar]
  31. Weisburg W. G., Tully J. G., Rose D. L., Petzel J. P., Oyaizu H., Yang D., Mandelco L., Sechrest J., Lawrence T. G., van Etten J., Maniloff J., Woese C. R. 1989; A phylogenetic analysis of the mycoplasmas: basis for their classification. J. Bacteriol. 171:6455–6467
    [Google Scholar]
  32. Whitman W. B., Sohn S., Caras D. S., Premachandran U. 1986; Isolation and characterization of 22 mesophilic methanococci. Syst. Appl. Microbiol. 7:235–240
    [Google Scholar]
  33. Widdel F. 1992; The genus Desulfotomaculum. 1792–1799 Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. The prokaryotes Springer-Verlag; New York:
    [Google Scholar]
  34. Wiegel J. 1981; Distinction between the Gram reaction and the Gram type of bacteria. Int. J. Syst. Bacteriol. 31:88
    [Google Scholar]
  35. Wiegel J., Ljungdahl L. G. 1979; Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. J. Bacteriol. 139:800–810
    [Google Scholar]
  36. Wiegel J., Quandt L. 1982; Determination of the Gram type using the reaction between polymyxin B and lipopolysaccharides of the outer cell wall of whole bacteria. J. Gen. Microbiol. 128:2261–2270
    [Google Scholar]
  37. Woese C. R., Gutell R., Gupta R., Noller H. F. 1983; Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol. Rev. 47:621–669
    [Google Scholar]
  38. Woese C. R., Sogin M., Stahl D. A., Lewis B. J., Bonen L. 1976; A comparison of the 16S ribosomal RNAs from mesophilic and thermophilic bacilli. J. Mol. Evol. 7:197–213
    [Google Scholar]
  39. Zhang X., Wiegel J. 1990; Isolation and partial characterization of a Clostridium species transforming para-hydroxybenzoate and 3,4-dihydroxybenzoate and producing phenols as the final transformation products. Microb. Ecol. 20:103–121
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-4-612
Loading
/content/journal/ijsem/10.1099/00207713-44-4-612
Loading

Data & Media loading...

Most cited Most Cited RSS feed