1887

Abstract

Abstract

The occurrence of thermophilic, halophilic anaerobic bacteria in the sediment of a Tunisian salted lake was tested in samples collected at 20-cm intervals down to a depth of 1.20 m. A long rod, present only in the 40-to 60-cm layer, was isolated at 60°C in a medium containing 100 g of NaCl per liter and designated strain H168. This strain produced acetate, ethanol, H, and CO from glucose metabolism. Fructose, xylose, ribose, cellobiose, and starch were also oxidized. The optimum temperature for growth was 60°C. No growth was obtained at 42 or 70°C. Strain H168 grew optimally in NaCl concentrations ranging from 50 to 100 g per liter, with the upper and lower limits of growth around 200 and 40 g per liter, respectively. The G+C ratio of the DNA was 39.6 mol%. Although halophilic, moderately thermophilic bacteria have been characterized among anaerobes, particularly within methanogens, strain H168 is the first true thermophilic (growing above 60°C) halophilic anaerobic bacterium described so far. The phylogeny, physiology, morphology, lipid content, and high G+C content of strain H168 are sufficiently different from those of genera belonging to the family to justify the definition of a new genus.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-3-534
1994-01-01
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/3/ijs-44-3-534.html?itemId=/content/journal/ijsem/10.1099/00207713-44-3-534&mimeType=html&fmt=ahah

References

  1. Cayol J.-L., Ollivier B., Prensier G., Guezennec J., Patel B., Garcia J.-L. 1993; Isolation of a thermophilic anaerobic halophilic fermentative bacterium from a Tunisian chott, abstr. I-88. 255 Abstr. 93rd Annu. Meet. Am. Soc. Microbiol. 1993 American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  2. De Soete G. 1983; A least square algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  3. Felsenstein J. 1993 PHYLIP (Phylogeny Inference Package) version 3.51c Distributed by the author, Department of Genetics, University of Washington; Seattle:
    [Google Scholar]
  4. Huber R., Langworthy T. A., König H., Thomm M., Woese C. R., Sleytr U. B., Stetter K. O. 1986; Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch. Microbiol. 144:324–333
    [Google Scholar]
  5. Huber R., Woese C. R., Langworthy T. A., Fricke H., Stetter K. O. 1989; Thermosipho africanus gen. nov. represents a new genus of thermophilic eubacteria within the “Thermotogales.”. Syst. Appl. Microbiol. 12:32–37
    [Google Scholar]
  6. Hungate R. E. 1969; A roll-tube method for the cultivation of strict anaerobes. 117–132 Norris J. R., Ribbons D. W. Methods in microbiology 3B Academic Press; New York:
    [Google Scholar]
  7. Imhoff-Stuckle D., Pfennig N. 1983; Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch. Microbiol. 136:194–198
    [Google Scholar]
  8. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. 21–132 Munro H. N. Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  9. Klingeberg M., Hashwa F., Antranikian G. 1991; Properties of extremely thermostable proteases from anaerobic hyperthermophilic bacteria. Appl. Microbiol. Biotechnol. 34:715–719
    [Google Scholar]
  10. Larsen H. 1962; Halophilism. 297–342 Gunsalus I. C., Stanier R. C. The bacteria: a treatise on structure and function 4 Academic Press; New York:
    [Google Scholar]
  11. Lee Y.-E., Jain M. K., Lee C., Lowe S. E., Zeikus J. G. 1993; Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb, nov., Thermoanaerobacterium thermosulfurogenes comb, nov., and Thermoanaerobacter thermohydrosulfuricus comb, nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int. J. Syst. Bacteriol. 43:41–51
    [Google Scholar]
  12. Liaw H. J., Mah R. A. 1992; Isolation and characterization of Haloanaerobacter chitinovorans gen. nov., sp. nov., a halophilic, anaerobic, chitinolytic bacterium from a solar saltern. Appl. Environ. Microbiol. 58:260–266
    [Google Scholar]
  13. Love C. A., Patel B. K. C., Nichols P. D., Stackebrandt E. 1993; Desulfotomaculum australicum sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst. Appl. Microbiol. 16:244–251
    [Google Scholar]
  14. Lowe S. E., Jain M. K., Zeikus J. G. 1993; Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol. Rev. 57:451–509
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39:159–167
    [Google Scholar]
  16. Nazina T. N., Ivanova A. E., Kanchaveli L. P., Rozanova E. P. 1989; A new sporeforming thermophilic methylotrophic sulfate-reducing bacterium, Desulfotomaculum kuznetsovii sp. nov. Mikrobiologiya 57:659–663
    [Google Scholar]
  17. Ollivier B., Caumette P., Garcia J.-L., Mah R. A. 1994; Anaerobic bacteria from hypersaline ecosystems. Microbiol. Rev. 58:27–38
    [Google Scholar]
  18. Ollivier B., Hatchikian C. E., Prensier G., Guezennec J., Garcia J.-L. 1991; Desulfohalobium retbaense gen. nov., sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal. Int. J. Syst. Bacteriol. 41:74–81
    [Google Scholar]
  19. Olsen G. J. 1988; Phylogenetic analysis using ribosomal RNA. Methods Enzymol. 164:793–812
    [Google Scholar]
  20. Olsen G. J., Overbeek R., Larsen N., March T. L., McCaughey M. J., Maciukenas M. A., Kuan W. M., Macke T. J., Xing Y., Woese C. R. 1992; The Ribosomal Database Project. Nucleic Acids Res. 20:2199–2200
    [Google Scholar]
  21. Oren A. 1983; Clostridium lortetii sp. nov., a halophilic obligatory anaerobic bacterium producing endospores with attached gas vacuoles. Arch. Microbiol. 136:42–48
    [Google Scholar]
  22. Oren A. 1986; The ecology and taxonomy of anaerobic halophilic eubacteria. FEMS Microbiol. Rev. 39:23–29
    [Google Scholar]
  23. Oren A., Paster B. J., Woese C. R. 1984; Haloanaerobiaceae: a new family of moderately halophilic obligatory anaerobic bacteria. Syst. Appl. Microbiol. 5:71–80
    [Google Scholar]
  24. Oren A., Pohla H., Stackebrandt E. 1987; Transfer of Clostridium lortetii to a new genus Sporohalobacter gen. nov. as Sporohalobacter lortetii comb, nov., and description of Sporohalobacter marismortui sp. nov. Syst. Appl. Microbiol. 9:239–246
    [Google Scholar]
  25. Oren A., Weisburg W. G., Kessel M., Woese C. R. 1984; Halobacteroides halobius gen. nov., sp. nov., a moderately halophilic anaerobic bacterium from the bottom sediments of the Dead Sea. Syst. Appl. Microbiol. 5:58–70
    [Google Scholar]
  26. Redburn A. C., Patel B. K. C. 1993; Phylogenetic analysis of Desulfotomaculum thermobenzoicum using polymerase chain reaction-amplified 16S rRNA-specific DNA. FEMS Microbiol. Lett. 113:81–86
    [Google Scholar]
  27. Rengpipat S., Langworthy T. A., Zeikus J. G. 1988; Halobacteroides acetoethylicus sp. nov., a new obligately anaerobic halophile isolated from deep subsurface hypersaline environments. Syst. Appl. Microbiol. 11:28–35
    [Google Scholar]
  28. Stetter K. O., Fiala G., Huber G., Huber R., Segerer A. 1990; Hyperthermophilic microorganisms. FEMS Microbiol. Rev. 75:117–124
    [Google Scholar]
  29. White D. C., Davis W. M., Nickels J. S., King J. D., Bobbie R. J. 1979; Determination of the sedimentary microbial bio-mass by extractable lipid phosphate. Oecologia (Berlin) 40:51–62
    [Google Scholar]
  30. Winkler S., Woese C. R. 1991; A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst. Appl. Microbiol. 14:305–310
    [Google Scholar]
  31. Winter J., Zellner G. 1990; Thermophilic anaerobic degradation of carbohydrates—metabolic properties of microorganisms from the different phases. FEMS Microbiol. Rev. 75:139–154
    [Google Scholar]
  32. Woese C. R., Kandier O., Wheelis M. L. 1990; Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87:4576–4579
    [Google Scholar]
  33. Zamost B. L., Nielsen H. K., Starnes R. L. 1991; Thermostable enzymes for industrial applications. J. Ind. Microbiol. 8:71–82
    [Google Scholar]
  34. Zeikus J. G. 1979; Thermophilic bacteria: ecology, physiology and technology. Enzyme Microb. Technol. 1:243–252
    [Google Scholar]
  35. Zeikus J. G., Hegge P. W., Thompson T. E., Phelps T. J., Langworthy T. A. 1983; Isolation and description of Haloanaerobium praevalens gen. nov. and sp. nov., an obligately anaerobic halophile common to Great Salt Lake sediments. Curr. Microbiol. 9:225–234
    [Google Scholar]
  36. Zhilina T. N., Kevbrin V. V., Lysenko A. M., Zavarzin G. A. 1991; Isolation of saccharolytic anaerobes from a halophilic cyanobacterial mat. Mikrobiologiya 60:101–107
    [Google Scholar]
  37. Zhilina T. N., Miroshnikova L. V., Osipov G. A., Zavarzin G. A. 1991; Halobacteroides lacunaris sp. nov., new saccharolytic, anaerobic, extremely halophilic organism from the lagoonlike hypersaline lake Chokrak. Mikrobiologiya 60:495–503
    [Google Scholar]
  38. Zhilina T. N., Zavarzin G. A. 1987; Methanohalobium evestigatum gen. nov., sp. nov., extremely halophilic methane-producing archaebacteria. Dokl. Akad. Nauk SSSR 293:464–468 (In Russian.)
    [Google Scholar]
  39. Zhilina T. N., Zavarzin G. A. 1990; A new extremely halophilic homoacetogenic bacterium Acetohalobium arabaticum gen. nov., sp. nov. Dokl. Akad. Nauk SSSR 311:745–747 (In Russian.)
    [Google Scholar]
  40. Zhilina T. N., Zavarzin G. A., Bulygina E. S., Kevbrin V. V., Osipov G. A., Chumakov K. M. 1991; Ecology, physiology and taxonomy studies on a new taxon of Haloanaerobiaceae, Haloincola saccharolytica gen. nov., sp. nov. Syst. Appl. Microbiol. 15:275–284
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-3-534
Loading
/content/journal/ijsem/10.1099/00207713-44-3-534
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error