1887

Abstract

Abstract

The taxonomic status of 16 collection strains of chickpea ( L.) rhizobia which were previously determined to belong to two groups (groups A and B) were compared with reference strains belonging to different genera and species of the family We used the following taxonomic, phylogenetic, and phenotypic characteristics and approaches to study these organisms: DNA homology, guanine-plus-cytosine content, restriction fragment length polymorphism of the amplified 16S-intergenic spacer rRNA gene, partial 16S rRNA sequencing, and auxanographic tests performed with 147 carbon sources. Similar groups of chickpea strains were identified by the different approaches. The chickpea strains were found to belong to the genus regardless of the phylogenetic group to which they belonged (group A or B). All strains fell into a tight cluster which included and and the group B strains were closely related to An analysis of partial 16S ribosomal DNA sequences revealed identical nucleotide sequences for the slowly growing strains and fast-growing strains that were used as representatives of groups A and B, respectively, and these organisms fell into the lineage. When the sequences of these organisms were compared with the partial sequences of and one- and two-nucleotide mismatches were observed, respectively, indicating that the chickpea rhizobia are closely related to these two species. The DNA-DNA hybridization data revealed that the chickpea rhizobia exhibited low levels of homology (less than 17%) to previously described and species. Moreover, when we compared chickpea strains to and the most closely related species as determined by the partial 16S rRNA sequence analysis, the homology values ranged from 21 to 52% and the ∆ values were greater than 5°C (∆ is the difference between the denaturation temperatures of the heterologous and homologous duplexes). These results confirmed that the rhizobia that nodulate chickpeas cannot be assigned to a previously described species. Within the chickpea rhizobia, the DNA homology values obtained when members of groups A and B were compared were less than 38%, indicating that the group A and group B organisms belong to different species. Furthermore, these organisms can be distinguished from each other by the results of phenotypic tests. We propose that the group B chickpea rhizobia should be assigned to a new species, UPM-Ca7 is the type strain of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-3-511
1994-01-01
2022-11-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/3/ijs-44-3-511.html?itemId=/content/journal/ijsem/10.1099/00207713-44-3-511&mimeType=html&fmt=ahah

References

  1. Arsac J. F., Cleyet-Marel J. C. 1986; Serological and ecological studies of Rhizobium sp. (Cicer arietinum L.) by immunofluorescence and ELISA technique: competitive ability for nodule formation between Rhizobium strains. Plant Soil 94:411–423
    [Google Scholar]
  2. Batzli J. M., Graves W. R., Berkum P. V. 1992; Diversity among rhizobia effective with Robinia pseudoacacia L. Appl. Environ. Microbiol. 58:2137–2143
    [Google Scholar]
  3. Brenner D. J., McWorter A. C., Knuston J. K. L., Steigerwalt A. G. 1982; Escherichia vulneris: a new species of Enterobacteriaceae associated with human wounds. J. Clin. Microbiol. 15:1133–1140
    [Google Scholar]
  4. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. 1981; Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J. Mol. Biol. 148:107–127
    [Google Scholar]
  5. Cadahia E., Leyvar A., Ruiz-Argueso T. 1986; Indigenous plasmids and cultural characteristics of rhizobia nodulating chickpeas (Cicer arietinum L.). Arch. Microbiol. 146:239–244
    [Google Scholar]
  6. Chakrabarti S. K., Mishra A. K., Chakrabartty P. K. 1986; DNA homology studies of rhizobia from Cicer arietinum L. Can. J. Microbiol. 32:524–527
    [Google Scholar]
  7. Chen W. X., Li G. S., Qi Y. L., Wang E. T., Yuan H. L., Li J. L. 1991; Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int. J. Syst. Bacteriol. 41:275–280
    [Google Scholar]
  8. Crosa J. M., Brenner D. J., Falkow S. 1973; Use of a single-strand-specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo- and heteroduplexes. J. Bacteriol. 115:904–911
    [Google Scholar]
  9. Crow V. L., Jarvis B. D. W., Greenwood R. M. 1981; Deoxyribonucleic acid homologies among acid-producing strains of Rhizobium. Int. J. Syst. Bacteriol. 31:152–172
    [Google Scholar]
  10. Dadarwal K. R. 1980; Host bacterium factors involved in legume symbiosis. Indian J. Microbiol. 20:245–252
    [Google Scholar]
  11. Eardly B. D., Young J. P. W., Selander R. K. 1992; Phylogenetic position of Rhizobium sp. strain OR191, a symbiont of both Medicago sativa and Phaseolus vulgaris, based on partial sequences of the 16S rRNA and nifH genes. Appl. Environ. Microbiol. 58:1809–1815
    [Google Scholar]
  12. Fernandez M. P., Meugnier H., Grimont P. A. D., Bardin R. 1989; Deoxyribonucleic acid relatedness among members of the genus Frankia. Int. J. Syst. Bacteriol. 39:424–429
    [Google Scholar]
  13. Fernandez M. P., Nazaret S., Simonet P., Cournoyer B., Normand P. 1991; Structure of the genus Frankia. 629–633 Polsinelli M., Materassi R., Vincenzini M. Nitrogen fixation Kluwer Academic Publisher; Dordrecht, The Netherlands:
    [Google Scholar]
  14. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr. 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42:166–170
    [Google Scholar]
  15. Garnier T., Canard B., Cole S. T. 1991; Cloning, mapping, and molecular characterization of the rRNA operons of Clostridium perfringens. J. Bacteriol. 173:5431–5438
    [Google Scholar]
  16. Gaur Y. D., Sen A. N. 1979; Cross inoculation group specificity in Cicer rhizobium symbiosis. New Phytol. 83:745–754
    [Google Scholar]
  17. Gehrke C. W., McCune R. A., Gama Sao M. A., Ehrlich M., Kuo K. C. 1984; Quantitative reverse-phase high performance liquid chromatography of major and modified nucleosides in DNA. J. Chromatogr. 301:199–219
    [Google Scholar]
  18. Graham P. H., Sadowsky M. J., Keyser H. H., Barnet Y. M., Bradley R. S., Cooper J. E., De Ley D. J., Jarvis B. D. W., Roslycky E. B., Strijdom B. W., Young J. P. W. 1991; Proposed minimal standards for the description of new genera and species of root-and stem-nodulating bacteria. Int. J. Syst. Bacteriol. 41:582–587
    [Google Scholar]
  19. Grimont P. A. D. 1988; Use of DNA reassociation in bacterial classification. Can. J. Bacteriol. 34:541–546
    [Google Scholar]
  20. Grimont P. A. D., Popoff M. Y., Grimont F., Coynault C., Lemelin M. 1980; Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr. Microbiol. 4:325–330
    [Google Scholar]
  21. Higgins D. G., Sharp P. M. 1988; Clustal: a package for performing multiple alignment on a microcomputer. Gene 73:237–244
    [Google Scholar]
  22. Jarvis B. D. W., Pankhurst C. E., Patel J. J. 1982; Rhizobium loti, a new species of legume-root nodule bacteria. Int. J. Syst. Bacteriol. 32:378–380
    [Google Scholar]
  23. Jordan D. C. 1982; Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing root nodule bacteria from leguminous plants. Int. J. Syst. Bacteriol. 32:136–139
    [Google Scholar]
  24. Jordan D. C. 1984; Family III. Rhizobiaceae. 234–242 Krieg N. R., Holt J. G. Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  25. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. 21–132 Munro H. N. Mammalian protein metabolism Academic Press, Inc.; New York:
    [Google Scholar]
  26. Kingsley M. T., Bohlool B. B. 1983; Characterization of Rhizobium sp. (Cicer arietinum L.) by immunofluorescence, immunodiffusion and intrinsic antibiotic resistance. Can. J. Microbiol. 29:518–526
    [Google Scholar]
  27. Laguerre G., Fernandez M. P., Edel V., Normand P., Amarger N. 1993; Genomic heterogeneity among Rhizobium strains isolated from Phaseolus vulgaris L. assessed by DNA-DNA hybridization and analysis of 16S ribosomal DNA sequences. Int. J. Syst. Bacteriol. 43:761–767
    [Google Scholar]
  28. Lindstrom K. 1989; Rhizobium galegae, a new species of legume root nodule bacteria. Int. J. Syst. Bacteriol. 39:365–367
    [Google Scholar]
  29. Martinez-Romero E., Segovia L., Mercante F. M., Franco A. A., Graham P., Pardo M. A. 1991; Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int. J. Syst. Bacteriol. 41:417–426
    [Google Scholar]
  30. Mullis K. B., Faloona F. A. 1987; Specific synthesis of DNA in vitro via a polymerase catalysed chain reaction. Methods Enzymol. 155:335–350
    [Google Scholar]
  31. Nei M., Li W. H. 1979; Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76:5269–5273
    [Google Scholar]
  32. Normand P., Cournoyer B., Simonet P., Nazaret S. 1992; Analysis of a ribosomal RNA operon in the actinomycete Frankia. Gene 111:119–124
    [Google Scholar]
  33. Nour S., Cleyet-Marel J. C., Beck D., Effosse A., Fernandez M. P. Genotypic and phenotypic diversity of Rhizobium isolated from chickpea (Cicer arietinum L.). Can. J. Microbiol. in press.
    [Google Scholar]
  34. Rinaudo G., Orenga S., Fernandez M. P., Meugnier H., Bardin R. 1991; DNA homologies among members of the genus Azorhizobium and other stem- and root-nodulating bacteria isolated from the tropical legume Sesbania rostrata. Int. J. Syst. Bacteriol. 41:114–120
    [Google Scholar]
  35. Saitou N., Nei M. 1987; A neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 44:406–425
    [Google Scholar]
  36. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467
    [Google Scholar]
  37. Scholia M. H., Moorefield J. A, Elkan G. H. 1984; Deoxyribonucleic acid homology between fast-growing soybean-nodulating bacteria and other rhizobia. Int. J. Syst. Bacteriol. 34:283–286
    [Google Scholar]
  38. Segovia L., Young J. P. W., Martinez-Romero E. 1993; Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int. J. Syst. Bacteriol. 43:374–377
    [Google Scholar]
  39. Sneath P. H. A., Sokal R. R. 1973 Numerical taxonomy W. H. Freeman and Sons; San Francisco:
    [Google Scholar]
  40. Vincent J. M. 19703–4 A manual for the practical study of root-nodule bacteria. I. B. P. Handbook no. 15 Blackwell Scientific Publications; Oxford:
    [Google Scholar]
  41. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandier O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Truper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37:463–464
    [Google Scholar]
  42. Willems A., Collins M. D. 1993; Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 43:305–313
    [Google Scholar]
  43. Winship P. R. 1989; An improved method for directly sequencing PCR amplified material using dimethyl sulfoxide. Nucleic Acids Res. 17:1266
    [Google Scholar]
  44. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–271
    [Google Scholar]
  45. Young J. P. 1985; Rhizobium population genetics: enzyme polymorphisms in isolates from peas, clover, beans and lucerne grown at the same site. J. Gen. Microbiol. 131:2399–2408
    [Google Scholar]
  46. Young J. P. W., Downer H. L., Eardly B. D. 1991; Phylogeny of the phototrophic Rhizobium strain BTAil by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J. Bacteriol. 173:2271–2277
    [Google Scholar]
  47. Zhang X., Harper R., Karsisto M., Lindstrom K. 1991; Diversity of Rhizobium bacteria isolated from the root nodules of leguminous trees. Int. J. Syst. Bacteriol. 41:104–113
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-3-511
Loading
/content/journal/ijsem/10.1099/00207713-44-3-511
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error