1887

Abstract

Abstract

We analyzed the 16S ribosomal DNAs of three obligately aerobic, bacteriochlorophyll -containing bacteria, and new isolate T4 (T = type strain), which was obtained from a marine cyanobacterial mat. is a member of the α-1 subclass of the and is moderately related to and (level of sequence similarity, 90%). and isolate T4 are closely related to and (level of sequence similarity, 95%). These organisms are members of the α-4 subclass of the Strain T4 is a motile, red or orange bacterium. The major carotenoids are bacteriorubixanthinal and erythroxanthin sulfate. In vivo measurements revealed bacteriochlorophyll absorption maxima at 377, 590, 800, and 868 nm. Strain T4 grows in the presence of 5 to 96 basis of its distinct phylogenetic position and phenotypic characteristics which are different from those of , we propose that strain T4 should be placed in a new species of the genus , The descriptions of “ and are emended.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-44-3-427
1994-07-01
2024-05-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/44/3/ijs-44-3-427.html?itemId=/content/journal/ijsem/10.1099/00207713-44-3-427&mimeType=html&fmt=ahah

References

  1. Clayton R. R. 1966; Spectroscopic analysis of bacteriochlorophyll in vivo and in vitro. Photochem. Photobiol. 5:669–677
    [Google Scholar]
  2. Davies B. H. 1965; Analysis of carotenoid pigments. 489–532 In Goodwin T.W. (ed.) Chemistry and biochemistry of plant pigments Academic Press; London:
    [Google Scholar]
  3. Dorsch M., Stackebrandt E. 1992; Some modifications in the procedure of direct sequencing of PCR amplified 16S rDNA. J. Microbiol. Methods 16:271–279
    [Google Scholar]
  4. Drews G. 1983 Mikrobiologisches Praktikum11 Springer; Berlin:
    [Google Scholar]
  5. Evans E. R., Fleischman D. E., Calvert H. E., Pyati P. V., Alter G., Rao N. S. Subba. 1990; Bacteriochlorophyll and photosynthetic reaction centers in Rhizobium strain BTA.1 Appl. Environ. Microbiol. 56:3445–3449
    [Google Scholar]
  6. Felsenstein J. 1988 PHYLIP manual, version 3.2 University Herbarium, University of California; Berkeley:
    [Google Scholar]
  7. Fuerst J. A., Hawkins J. A., Holmes A., Sly L. I., Moore C. J., Stackebrand E. 1993; Porphyrobacter neustonnensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-synthesizing budding bacterium from freshwater. Int. J. Syst. Bacteriol. 43:125–134
    [Google Scholar]
  8. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. (ed.) 1981 Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  9. Gregersen T. 1978; Rapid method for distinction of gram-negative from gram-positive bacteria. Eur. J. Appl. Microbiol. Biotechnol. 5:123–127
    [Google Scholar]
  10. Harashima K., Kawazoe K., Yoshida I., Kamata H. 1987; Light-stimulated aerobic growth of Erythrobacter species OCh114. Plant Cell Physiol. 28:365–374
    [Google Scholar]
  11. Harashima K., Nakagawa M., Murata N. 1982; Photochemical activities of bacteriochlorophyll in aerobically grown cells of heterotrophs, Erythrobacter species (OCh114) and Erythrobacter longus (OCh101). Plant Cell Physiol. 23:185–193
    [Google Scholar]
  12. Harashima K., Shiba T., Totsuka T., Simidu U., Toga N. 1978; Occurrence of bacteriochlorophyll a in a strain of an aerobic heterotrophic bacterium. Agric. Biol. Chem. 42:1627–1628
    [Google Scholar]
  13. Harashima K., Takamiya K. 1989; Photosynthesis and photosynthetic apparatus. 39–72 In Harashima K., Shiba T., Murata N. (ed.) Aerobic photosynthetic bacteria Japan Scientific Societies Press/Springer Verlag; Tokyo:
    [Google Scholar]
  14. Imhoff J. F., Trüper H. G. 1989; Purple non-sulfur bacteria. 1658–1682 In Staley J. T., Bryant M. P., Pfennig N., Holt J. G. (ed.) Bergey’s manual of systematic bacteriology vol. 3 Williams & Wilkins; Baltimore:
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. 21–132 In Munro H.N. (ed.) Mammalian protein metabolism Academic Press; New York:
    [Google Scholar]
  16. Kellenberger E., Ryter A., Sechaud J. 1958; Electron microscope study of DNA-containing plasms. J. Biophys. Biochem. Cytol. 4:671–678
    [Google Scholar]
  17. Liebetanz R., Hornberger U., Drews G. 1991; Organization of the genes coding for the reaction center L and M subunits and B870 antenna polypeptides a and β from the aerobic photosynthetic bacterium Erythrobacter spec. OCh114. Mol. Microbiol. 5:1459–1468
    [Google Scholar]
  18. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275
    [Google Scholar]
  19. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  20. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  21. Olsen G. J., Overbeek R. Larsen, Marsh N., McCaughey M. J., Maciukenas M. A., Kuan W. M., Macke T. J., Woese C. R. 1992; The ribosomal database project. Nucleic Acids Res. 20: (Suppl.) 2199–2200
    [Google Scholar]
  22. Pfennig N. 1974; Rhodopseudomonas globiformis spec, nov., a new species of Rhodospirillaceae. Arch. Microbiol. 100:197–206
    [Google Scholar]
  23. Pfennig N., Lippert K. D. 1966; über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch. Mikrobiol. 55:245–256
    [Google Scholar]
  24. Rainey F. A., Dorsch M., Morgan H. W., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta thermophila: its phylogenetic position and implications for the systematics of the order Spirochaetales. Syst. Appl. Microbiol. 15:197–202
    [Google Scholar]
  25. Rainey F. A., Stackebrandt E. 1993; Phylogenetic analysis of the bacterial genus Thermobacteroides indicates an ancient origin of Thermobacteroides proteolyticus. Lett. Appl. Microbiol. 16:282–286
    [Google Scholar]
  26. Saitou N., Nei M. 1987; The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  27. Sato K. 1978; Bacteriochlorophyll formation by facultative methylotrophs, Protaminobacter ruber and Pseudomonas AM1. FEBS Lett. 85:207–210
    [Google Scholar]
  28. Shiba T., Shioi Y., Takamiya K. I., Sutton D. C., Wilkinson C. R. 1991; Distribution and physiology of aerobic bacteria containing bacteriochlorophyll a on the east and west coasts of Australia. Appl. Environ. Microbiol. 57:295–300
    [Google Scholar]
  29. Shiba T., Simidu V., Taga N. 1979; Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl. Environ. Microbiol. 38:43–45
    [Google Scholar]
  30. Shimada K., Hayashi H., Tasumi M. 1985; Bacteriochlorophyll-protein complexes of aerobic bacteria, Eryhrobacter longus and Erythrobacter species OCh114. Arch. Microbiol. 143:244–247
    [Google Scholar]
  31. Stackebrandt E., Charfreitag O. 1990; Partial 16S rRNA primary structure of five Actinomyces species: phylogenetic implications and development of an Actinomyces israelii specific oligonucleotide probe. J. Gen. Microbiol. 136:37–43
    [Google Scholar]
  32. Stackebrandt E., Liesack W., Goebel B. M. 1993; Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB J. 7:232–236
    [Google Scholar]
  33. Stahl D. A., Key R., Fleshner B., Smit J. 1992; The phylogeny of marine and freshwater caulobacters reflects their habitat. J. Bacteriol. 174:2193–2198
    [Google Scholar]
  34. Takaichi S., Furihata K., Ishidsu S. I., Shimada K. 1991; Carotenoid sulfates from the aerobic photosynthetic bacterium Erythrobacter longus. Phytochemistry (Oxford) 30:3411–3415
    [Google Scholar]
  35. Takaichi S., Shimada K., Ishidsu J. I. 1988; Monocyclic cross-conjugated carotenal from an aerobic photosynthetic bacterium, Erythrobacter longus. Phytochemistry (Oxford) 27:3605–3609
    [Google Scholar]
  36. Takaichi S., Shimada K., Ishidsu J. I. 1990; Carotenoids from the aerobic photosynthetic bacterium, Erythrobacter longus: β-carotene and its hydroxyl derivates. Arch. Microbiol. 153:118–122
    [Google Scholar]
  37. Takamiya K., Iba K., Okamura K. 1987; Reaction center complex from an aerobic photosynthetic bacterium, Erythrobacter species OCh114. Biochim. Biophys. Acta 890:127–133
    [Google Scholar]
  38. Takamiya K., Okamura K. 1984; Photochemical activities and photosynthetic ATP formation in membrane preparation from a facultative methylotroph, Protaminobacter ruber strain NR-1. Arch. Microbiol. 140:21–26
    [Google Scholar]
  39. Trüper H. G. 1987; Phototrophic bacteria. A taxonomic versus phylogenetic survey. Microbiologia 3:71–89
    [Google Scholar]
  40. Urakami T., Komagata K. 1984; Protomonas, a new genus of facultatively methylotrophic bacteria. Int. J. Syst. Bacteriol. 34:188–201
    [Google Scholar]
  41. Visscher P. T. 1992; Microbial sulfur cycling in laminated marine ecosystems. Ph.D. thesis University of Groningen; Haaren, The Netherlands:
    [Google Scholar]
  42. Woese C. R. 1987; Bacterial evolution. Microbiol. Rev. 51:221–1271
    [Google Scholar]
  43. Yabuuchi E., Yano E., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb, nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb, nov., and two genospecies of the genus Sphingomonas. Microbiol. Immunol. 34:99–119
    [Google Scholar]
  44. Yurkov V., Gad’on N., Drews G. 1993; The major part of polar carotenoids of the aerobic bacteria Roseococcus thiosulfatophilus RB3 and Erythromicrobium ramosum E5 is not bound to the bacteriochlorophyll a complexes of the photosynthetic apparatus. Arch. Microbiol. 160:372–376
    [Google Scholar]
  45. Yurkov V., Gorlenko V. M. 1992; A new genus of freshwater aerobic, bacteriochlorophyll a-containing bacteria, Roseococcus gen. nov. Microbiology (Engl. Transi. Mikrobiologiya) 60:628–632
    [Google Scholar]
  46. Yurkov V., Gorlenko V. M. 1993; New species of aerobic bacteria from the genus Erythromicrobium containing bacteriochlorophyll a. Microbiology (Engl. Transi. Mikrobiologiya) 61:163–168
    [Google Scholar]
  47. Yurkov V., Gorlenko V. M., Kompantseva E. I. 1992; A new type of freshwater aerobic orange-coloured bacterium, Erythromicrobium gen. nov. containing bacteriochlorophyll a. Microbiology (Engl. Transi. Mikrobiologiya) 61:169–172
    [Google Scholar]
  48. Yurkov V., Gorlenko V. M., Mityushina L. L., Starynin D. A. 1991; Effect of limiting factors on the structure of phototrophic associations in thermal springs. Microbiology (Engl. Transi. Mikrobiologiya) 60:763–711
    [Google Scholar]
  49. Yurkov V., Lysenko A. M., Gorlenko V. M. 1991; Hybridization analysis of the classification of bacteriochlorophyll a-containing freshwater aerobic bacteria. Microbiology (Engl. Transi. Mikrobiologiya) 60:362–366
    [Google Scholar]
  50. Yurkov V., van Gemerden H. 1993; Impact of light/dark regime on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch. Microbiol. 159:84–89
    [Google Scholar]
  51. Yurkov V., van Gemerden H. 1993; Abundance and salt tolerance of obligately aerobic, phototrophic bacteria in a microbial mat. Neth. J. Sea Res. 31:57–62
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-3-427
Loading
/content/journal/ijsem/10.1099/00207713-44-3-427
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error